[1] 张存鹰,赵波.超声振动辅助加工表面微结构及其特性研究进展[J].表面技术, 2019, 48(5):259-274. ZHANG C Y, ZHAO B. Research progress of properties of surface micro-structure in ultrasonic vibration assisted machining[J]. Surface Technology, 2019, 48(5):259-274.(in Chinese) [2] 陈苏婷,胡海锋,张闯.基于激光散斑成像的零件表面粗糙度建模[J].物理学报, 2015, 64(23):113-121. CHEN S T, HU H F, ZHANG C. Surface roughness modeling based on laser speckle imaging[J]. Acta Physica Sinica, 2015, 64(23):113-121.(in Chinese) [3] PATEL D R, KIRAN M B, VAKHARIA V. Modeling and prediction of surface roughness using multiple regressions:a noncontact approach[J]. Engineering Reports, 2020, 2(2):1-15. [4] 杨洁,李乐.基于机器视觉的表面粗糙度测量与三维评定[J].光学技术, 2016, 42(6):491-495. YANG J, LI L. Surface roughness measurement and three-dimensional assessment based on machine vision[J]. Optical Technique, 2016, 42(6):491-495.(in Chinese) [5] 魏万珍.基于图像技术的零件表面粗糙度检测方法及系统研究[D].太原:太原理工大学, 2022. WEI W Z. Research on detection method and system of surface roughness of parts based on image technology[D].Taiyuan:Taiyuan University of Technology, 2022.(in Chinese) [6] ZHAO L, LU S P, CHEN T, et al. Deep symmetric network for underexposed image enhancement with recurrent attentional learning[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D.C.,USA:IEEE Press,2021:12055-12064. [7] LI J J, FENG X M, HUA Z. Low-light image enhancement via progressive-recursive network[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31(11):4227-4240. [8] 文海琼,李建成.基于直方图均衡化的自适应阈值图像增强算法[J].中国集成电路, 2022, 31(3):38-42, 71. WEN H Q, LI J C. An adaptive threshold image enhancement algorithm based on histogram equalization[J]. China Integrated Circuit, 2022, 31(3):38-42, 71.(in Chinese) [9] 艾青松,张皓喆,严俊伟.基于自适应伽马校正的异常驾驶行为检测方法[J].计算机工程, 2023, 49(9):279-286. AI Q S, ZHANG H Z, YAN J W. Abnormal driving behavior detection method based on adaptive gamma correction[J]. Computer Engineering, 2023, 49(9):279-286.(in Chinese) [10] BHANDARI A K, SRINIVAS K, MAURYA S. Gamma corrected reflectance for low contrast image enhancement using guided filter[J]. Multimedia Tools and Applications, 2022, 81(4):6009-6030. [11] 翟海祥,何嘉奇,王正家,等.改进Retinex与多图像融合算法用于低照度图像增强[J].红外技术, 2021, 43(10):987-993. ZHAI H X, HE J Q, WANG Z J, et al. Improved Retinex and multi-image fusion algorithm for low illumination image enhancement[J]. Infrared Technology, 2021, 43(10):987-993.(in Chinese) [12] 丁元,邬开俊.基于RGB色彩平衡方法的沙尘降质图像增强[J].光学精密工程, 2023, 31(7):1053-1064. DING Y, WU K J. Sand-dust image enhancement using RGB color balance method[J]. Optics and Precision Engineering, 2023, 31(7):1053-1064.(in Chinese) [13] JOBSON D J, RAHMAN Z, WOODELL G A. Properties and performance of a center/surround Retinex[J]. IEEE Transactions on Image Processing, 1997, 6(3):451-462. [14] LIN H N, SHI Z W. Multi-scale Retinex improvement for nighttime image enhancement[J]. Optik, 2014, 125(24):7143-7148. [15] DONG L L, ZHAO L J, WANG J. Image enhancement via texture protection Retinex[J]. IET Image Processing, 2022, 16(1):61-78. [16] LECCA M. A Retinex inspired bilateral filter for enhancing images under difficult light conditions[C]//Proceedings of the 16th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications. Washington D.C.,USA:IEEE Press,2021:76-86. [17] MU Q, WANG X Y, WEI Y Y, et al. Low and non-uniform illumination color image enhancement using weighted guided image filtering[J]. Computational Visual Media, 2021, 7(4):529-546. [18] 周友行,易倩,杨文佳,等.改进DenseNet模型在工件表面粗糙度视觉检测中的应用[J/OL].机械科学与技术:1-6[2023-04-07].https://doi.org/10.13433/j.cnki.1003-8728.20230010. ZHOU Y X, YI Q, YANG W J, et al. Application of improved DenseNet model in visual inspection of workpiece surface roughness[J]. Mechanical Science and Technology for Aerospace Engineering:1-6[2023-04-07].https://doi.org/10.13433/j.cnki.1003-8728.20230010.(in Chinese) [19] 易怀安,陆玲莉,舒爱华,等.基于神经网络和仿真数据的粗糙度分类检测[J].组合机床与自动化加工技术, 2022(12):72-76, 80. YI H A, LU L L, SHU A H, et al. Roughness classification and detection based on neural network and simulation data[J]. Modular Machine Tool&Automatic Manufacturing Technique, 2022(12):72-76, 80.(in Chinese) [20] LAND E H, MCCANN J J. Lightness and Retinex theory[J]. Journal of the Optical Society of America, 1971, 61(1):1-11. [21] 田会娟,蔡敏鹏,关涛,等.基于YCbCr颜色空间的Retinex低照度图像增强方法研究[J].光子学报, 2020, 49(2):0210002. TIAN H J, CAI M P, GUAN T, et al. Low-light image enhancement method using Retinex method based on YCbCr color space[J]. Acta Photonica Sinica, 2020, 49(2):0210002.(in Chinese) [22] 刘杰,张建勋,代煜.基于多引导滤波的图像增强算法[J].物理学报, 2018, 67(23):293-302. LIU J, ZHANG J X, DAI Y. Image enhancement based on multi-guided filtering[J]. Acta Physica Sinica, 2018, 67(23):293-302.(in Chinese) [23] 贺钰茹.基于深度学习与MRI结构信息的动态PET滤波方法研究[D].广州:南方医科大学, 2021. HE Y R. Dynamic PET image filtering method based on deep learning and MRI structure information[D].Guangzhou:Southern Medical University, 2021.(in Chinese) [24] XU L, YAN Q, XIA Y, et al. Structure extraction from texture via relative total variation[J]. ACM Transactions on Graphics, 2012, 31(6):139. [25] ALI U, LEE I H, MAHMOOD M T. Guided image filtering in shape-from-focus:a comparative analysis[J]. Pattern Recognition, 2021, 111:107670. [26] 张红英,朱恩弘,吴亚东.一种基于细节层分离的单曝光HDR图像生成算法[J].自动化学报, 2019, 45(11):2159-2170. ZHANG H Y, ZHU E H, WU Y D. High dynamic range image generating algorithm based on detail layer separation of a single exposure image[J]. Acta Automatica Sinica, 2019, 45(11):2159-2170.(in Chinese) [27] LIU S G, ZHANG Y. Detail-preserving underexposed image enhancement via optimal weighted multi-exposure fusion[J]. IEEE Transactions on Consumer Electronics, 2019, 65(3):303-311. [28] MERTENS T, KAUTZ J, VAN REETH F. Exposure fusion:a simple and practical alternative to high dynamic range photography[J]. Computer Graphics Forum, 2009, 28(1):161-171. [29] 杨卫中,徐银丽,乔曦,等.基于对比度受限直方图均衡化的水下海参图像增强方法[J].农业工程学报, 2016, 32(6):197-203. YANG W Z, XU Y L, QIAO X, et al. Method for image intensification of underwater sea cucumber based on contrast-limited adaptive histogram equalization[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(6):197-203.(in Chinese) |