作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2024, Vol. 50 ›› Issue (6): 245-254. doi: 10.19678/j.issn.1000-3428.0067684

• 图形图像处理 • 上一篇    下一篇

基于光照校正和图像融合的零件表面图像增强

董良振1, 田建艳1, 杨胜强2, 陈海滨3   

  1. 1. 太原理工大学电气与动力工程学院, 山西 太原 030024;
    2. 太原理工大学机械与运载工程学院, 山西 太原 030024;
    3. 廊坊市北方天宇机电科技有限公司, 河北 廊坊 065000
  • 收稿日期:2023-05-23 修回日期:2023-09-25 发布日期:2024-06-11
  • 通讯作者: 田建艳,E-mail:tut_tianjy@163.com E-mail:tut_tianjy@163.com
  • 基金资助:
    山西省重点研发计划项目(201903D121057)。

Image Enhancement of Parts Surface Based on Illumination Correction and Image Fusion

DONG Liangzhen1, TIAN Jianyan1, YANG Shengqiang2, CHEN Haibin3   

  1. 1. College of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China;
    2. College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China;
    3. Langfang North Tianyu Mechanical Electrical Technology Co., Ltd., Langfang 065000, Hebei, China
  • Received:2023-05-23 Revised:2023-09-25 Published:2024-06-11

摘要: 在低照度条件下采集的机械加工零件表面图像质量较低,严重影响后续与粗糙度相关的特征提取效果。为此,提出一种基于光照校正和图像融合的低照度图像增强算法。首先对引导滤波算法进行改进,使其能根据图像的纹理情况自适应地调整滤波参数,在平滑纹理的同时保持整体结构,得到更优质的照度图;然后对原始图像进行反相增强,抑制图像中的高亮条纹与光斑,通过图像融合来综合原图和正、反相增强图像的优质像素;接着利用限制对比度的自适应直方图均衡化(CLAHE)算法进一步提高融合图像的对比度;最后将增强图像用于2种不同的零件表面粗糙度检测模型。在钛、钢、镁3种材质的零件表面低照度图像数据集上进行实验,结果表明,该算法有效增强了低照度零件表面图像的质量,增强图像的标准差、平均梯度和信息熵均高于对比算法。与图像增强前相比,基于灰度共生矩阵特征提取的支持向量回归(GLCM-SVR)和基于卷积回归神经网络(RCNN)的粗糙度检测模型的均方根误差分别降低了0.140和0.202 μm,平均绝对误差分别降低了0.116和0.146 μm,表明图像增强能有效提升低照度条件下基于视觉的粗糙度检测方法的精度。

关键词: 表面粗糙度, 图像增强, Retinex理论, 光照校正, 图像融合

Abstract: The quality of surface images of machined parts collected under low illumination conditions is relatively poor, which significantly affects the subsequent extraction of roughness-related features. To this end, a low-light image enhancement algorithm based on illumination correction and image fusion is proposed. First, the guided filtering algorithm is improved to adaptively adjust the filtering parameters based on the texture of the image. This technique maintains the overall structure while smoothing the texture and obtains a higher quality illumination map. Then, inverse enhancement is performed on the original image to suppress the bright stripes and spots and integrate the high-quality pixels of the original image and the positive and negative enhanced images through image fusion. Subsequently, the Contrast Limited Adaptive Histogram Equalization (CLAHE) algorithm with limited contrast is used to enhance the contrast of the fused image. Finally, two different surface roughness detection models of parts are applied to the enhanced images. Experiments are conducted on a low-light image dataset of titanium, steel, and magnesium parts. The results show that the algorithm effectively enhances the quality of low-light part surface images, and the standard deviation, average gradient, and information entropy of the enhanced images are higher than those obtained with the existing algorithm. Compared with the results before image enhancement, the root mean square errors of the roughness detection models based on Gray Level Co-occurrence Matrix with Support Vector Regression (GLCM-SVR) and Regression Convolutional Neural Network (RCNN) are reduced by 0.140 and 0.202 μm, and the average absolute errors decrease by 0.116 and 0.146 μm, respectively. This indicates that image enhancement can effectively improve the accuracy of vision-based roughness detection methods under low illumination conditions.

Key words: surface roughness, image enhancement, Retinex theory, illumination correction, image fusion

中图分类号: