1 |
叶华韵, 王正飞. 青少年特发性脊柱侧凸的流行病学研究进展. 系统医学, 2022, 7 (20): 192- 196.
|
|
YE H Y , WANG Z F . Progress of epidemiological study on adolescent idiopathic scoliosis. Systems Medicine, 2022, 7 (20): 192- 196.
|
2 |
海涌, 王云生. 青少年特发性脊柱侧凸: 探索、发展、创新. 骨科, 2023, 14 (1): 1- 3.
|
|
HAI Y , WANG Y S . Adolescent idiopathic scoliosis: exploration, development and innovation. Orthopaedics, 2023, 14 (1): 1- 3.
|
3 |
CHENG J , CASTELEIN R , CHU W , et al. Adolescent idiopathic scoliosis. Nat Rev Dis Primers, 2015, 1, 15030.
doi: 10.1038/nrdp.2015.30
|
4 |
LU D Z , LI T , YU W Q , et al. Expert consensus on the design, manufacture, materials, and clinical application of customized three-dimensional printing scoliosis orthosis. Digital Medicine, 2022, 8 (1): 2.
|
5 |
吴海滨, 徐若彤, 王爱丽, 等. 基于计算机视觉的人体内腔三维重建技术综述. 计算机工程, 2021, 47 (10): 1- 15.
URL
|
|
WU H B , XU R T , WANG A L , et al. Overview of 3D human lumen reconstruction technology based oncomputer vision. Computer Engineering, 2021, 47 (10): 1- 15.
URL
|
6 |
方威扬, 林东鑫, 寇万福, 等. 医学图像三维重建系统的研究进展. 中国医学物理学杂志, 2022, 39 (7): 823- 827.
doi: 10.3969/j.issn.1005-202X.2022.07.006
|
|
FANG W Y , LIN D X , KOU W F , et al. Advances in medical image three-dimensional reconstruction system. Chinese Journal of Medical Physics, 2022, 39 (7): 823- 827.
doi: 10.3969/j.issn.1005-202X.2022.07.006
|
7 |
郑丽萍, 李光耀, 姜华. 口腔颌面疾病辅助诊断系统的设计与实现. 计算机工程, 2011, 37 (21): 279-281, 284.
URL
|
|
ZHENG L P , LI G Y , JIANG H . Design and implementation of aided diagnosis system for oral and maxillofacial diseases. Computer Engineering, 2011, 37 (21): 279-281, 284.
URL
|
8 |
ILLÉS T , SOMOSKEÖY S . Comparison of scoliosis measurements based on three-dimensional vertebra vectors and conventional two-dimensional measurements: advantages in evaluation of prognosis and surgical results. European Spine Journal, 2013, 22 (6): 1255- 1263.
doi: 10.1007/s00586-012-2651-y
|
9 |
HOU Y Y , LIU X X , GUO Y , et al. Strategies for effective neural circuit reconstruction after spinal cord injury: use of stem cells and biomaterials. World Neurosurgery, 2022, 161, 82- 89.
doi: 10.1016/j.wneu.2022.02.012
|
10 |
MCCOLLOUGH C H , PRIMAK A N , BRAUN N , et al. Strategies for reducing radiation dose in CT. Radiologic Clinics of North America, 2009, 47 (1): 27- 40.
doi: 10.1016/j.rcl.2008.10.006
|
11 |
CHAHINE G A , RICHARD M I , HOMS-REGOJO R A , et al. Imaging of strain and lattice orientation by quick scanning X-ray microscopycombined with three-dimensional reciprocal space mapping. Journal of Applied Crystallography, 2014, 47 (2): 762- 769.
doi: 10.1107/S1600576714004506
|
12 |
ZHANG X L , ZHENG Y Q , BAI X M , et al. Femoral image segmentation based on two-stage convolutional network using 3D-DMFNet and 3D-ResUnet. Computer Methods and Programs in Biomedicine, 2022, 226, 107110.
doi: 10.1016/j.cmpb.2022.107110
|
13 |
AČG AVOJSKÁ J , PETRASCH J , MATTERN D , et al. Estimating and abstracting the 3D structure of feline bones using neural networks on X-ray(2D) images. Communications Biology, 2020, 3, 337.
doi: 10.1038/s42003-020-1057-3
|
14 |
王帅坤, 周志勇, 胡冀苏, 等. 基于深度学习的肝脏CT-MR图像无监督配准. 计算机工程, 2023, 49 (1): 223- 233.
URL
|
|
WANG S K , ZHOU Z Y , HU J S , et al. Unsupervised registration for liver CT-MR images based on deep learning. Computer Engineering, 2023, 49 (1): 223- 233.
URL
|
15 |
KASTEN Y , DOKTOFSKY D , KOVLER I . End-to-end convolutional neural network for 3D reconstruction of knee bones from bi-planar X-ray images. Berlin, Germany: Springer, 2020.
|
16 |
CHEN H , ZHANG Y , KALRA M K , et al. Low-dose CT with a residual encoder-decoder convolutional neural network. IEEE Transactions on Medical Imaging, 2017, 36 (12): 2524- 2535.
doi: 10.1109/TMI.2017.2715284
|
17 |
DING Q Q , CHEN G Y , ZHANG X Q , et al. Low-dose CT with deep learning regularization via proximal forward-backward splitting. Physics in Medicine[WT《Times New Roman》]& Biology, 2020, 65 (12): 125009.
|
18 |
XIE S P , ZHENG X Y , CHEN Y , et al. Artifact removal using improved GoogLeNet for sparse-view CT reconstruction. Scientific Reports, 2018, 8, 6700.
doi: 10.1038/s41598-018-25153-w
|
19 |
MA Y J, FENG P, HE P, et al. Low-dose CT with a deep convolutional neural network blocks model using mean squared error loss and structural similar loss[C]//Proceedings of the 11th International Conference on Information Optics and Photonics. Washington D. C., USA: IEEE Press, 2019: 116-127.
|
20 |
FENG Z W, LI Z H, CAI A L, et al. A preliminary study on projection denoising for low-dose CT imaging using modified dual-domain U-net[C]//Proceedings of the 3rd International Conference on Artificial Intelligence and Big Data. Washington D. C., USA: IEEE Press, 2020: 223-226.
|
21 |
KANG E , MIN J H , YE J C . A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction. Medical Physics, 2017, 44 (10): 360- 375.
|
22 |
ZHENG A , GAO H , ZHANG L , et al. A dual-domain deep learning-based reconstruction method for fully 3D sparse data helical CT. Physics in Medicine[WT《Times New Roman》]& Biology, 2020, 65 (24): 245030.
|
23 |
GE Y S , SU T , ZHU J T , et al. ADAPTIVE-NET: deepcomputed tomography reconstruction network with analytical domain transformation knowledge. Quantitative Imaging in Medicine and Surgery, 2020, 10 (2): 415- 427.
|
24 |
SHEN L Y , ZHAO W , XING L . Patient-specific reconstruction of volumetriccomputed tomography images from a single projection view via deep learning. Nature Biomedical Engineering, 2019, 3, 880- 888.
|
25 |
ZHANG H M , LIU B D , YU H Y , et al. MetaInv-net: meta inversion network for sparse view CT image reconstruction. IEEE Transactions on Medical Imaging, 2021, 40 (2): 621- 634.
|
26 |
SHIODE R , KABASHIMA M , HIASA Y , et al. 2D-3D reconstruction of distal forearm bone from actual X-ray images of the wrist using convolutional neural networks. Scientific Reports, 2021, 11, 15249.
|
27 |
WOO S , PARK J , LEE J Y , et al. CBAM: convolutional block attention module. Berlin, Germany: Springer, 2018.
|
28 |
CHEN W C , ZHANG D , LI M , et al. STCAM: spatial-temporal and channel attention module for dynamic facial expression recognition. IEEE Transactions on Affective Computing, 2023, 14 (1): 800- 810.
|
29 |
KASER S , BERGAUER T , BIRKFELLNER W , et al. First application of the GPU-based software framework TIGRE for proton CT image reconstruction. Physica Medica, 2021, 84, 56- 64.
|