1 |
葛路, 何仕荣. 深度学习在工业表面缺陷检测领域的应用研究. 计算技术与自动化, 2022, 41 (1): 59- 65.
|
|
GE L , HE S R . Research on application of deep learning in field of industrial surface defects detection. Computing Technology and Automation, 2022, 41 (1): 59- 65.
|
2 |
杨艺鑫, 高建伟, 王鹏飞, 等. 基于深度学习的工业零件表面缺陷图像检测方法研究. 控制与决策, 2018, 33 (12): 2293- 2300.
|
|
YANG Y X , GAO J W , WANG P F , et al. Research on image detection method of surface defects of industrial parts based on deep learning. Control and Decision Making, 2018, 33 (12): 2293- 2300.
|
3 |
罗东亮, 蔡雨萱, 杨子豪, 等. 工业缺陷检测深度学习方法综述. 中国科学: 信息科学, 2022, 52 (6): 1002- 1039.
|
|
LUO D L , CAI Y X , YANG Z H , et al. Survey on industrial defect detection with deep learning. Scientia Sinica (Informationis), 2022, 52 (6): 1002- 1039.
|
4 |
闫萌, 林英, 聂志深, 等. 一种提高联邦学习模型鲁棒性的训练方法. 计算机科学, 2022, 49 (S1): 496- 501.
|
|
YAN M , LIN Y , NIE Z S , et al. A training method to improve the robustness of federated learning models. Computer Science, 2022, 49 (S1): 496- 501.
|
5 |
BROMLEY J , BENTZ J W , BOTTOU L , et al. Signature verification using a ″siamese″ time delay neural network. International Journal of Pattern Recognition and Artificial Intelligence, 1993, 7 (4): 669- 679.
doi: 10.1142/S0218001493000339
|
6 |
尤庆丽, 李国勇. 基于孪生网络的离线手写签名鉴别算法. 计算机应用, 2023, 43 (z1): 45- 48.
|
|
YOU Q L , LI G Y . An offline handwritten signature authentication algorithm based on Siamese networks. Computer Applications, 2023, 43 (z1): 45- 48.
|
7 |
王晓峰, 王昆, 刘轩, 等. 自适应重加权池化深度多任务学习的表情识别. 计算机工程与设计, 2022, 43 (4): 1111- 1120.
|
|
WANG X F , WANG K , LIU X , et al. Expression recognition based on adaptive reweighting pooling deep multi task learning. Computer Engineering and Design, 2022, 43 (4): 1111- 1120.
|
8 |
林点, 潘理, 易平. 面向图像识别的卷积神经网络鲁棒性研究进展. 网络与信息安全学报, 2022, 8 (3): 111- 122.
|
|
LIN D , PAN L , YI P . Research on the robustness of convolutional neural networks in image recognition. Chinese Journal of Network and Information Security, 2022, 8 (3): 111- 122.
|
9 |
陈庆宇, 季繁繁, 袁晓彤. 基于伪孪生网络双层优化的对比学习. 模式识别与人工智能, 2022, 35 (10): 928- 938.
|
|
CHEN Q Y , JI F F , YUAN X T . Contrastive learning based on bilevel optimization of pseudo Siamese networks. Pattern Recognition and Artificial Intelligence, 2022, 35 (10): 928- 938.
|
10 |
陈宗仁, 谢文达, 余君, 等. 基于深度学习的金属机械零件表面缺陷检测方法. 制造业自动化, 2021, 43 (12): 170- 173.
doi: 10.3969/j.issn.1009-0134.2021.12.041
|
|
CHEN Z R , XIE W D , YU J , et al. Surface defect detection method of metal mechanical parts based on deep learning. Manufacturing Automation, 2021, 43 (12): 170- 173.
doi: 10.3969/j.issn.1009-0134.2021.12.041
|
11 |
LITJENS G , KOOI T , BEJNORDI B E , et al. A survey on deep learning in medical image analysis. Medical Image Analysis, 2017, 42, 60- 88.
doi: 10.1016/j.media.2017.07.005
|
12 |
LIU J R , LI R R , SUN C . Co-correcting: noise-tolerant medical image classification via mutual label correction. IEEE Transactions on Medical Imaging, 2021, 40 (12): 3580- 3592.
doi: 10.1109/TMI.2021.3091178
|
13 |
KRULL A, BUCHHOLZ T O, JUG F. Noise2Void-learning denoising from single noisy images[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2019: 2124-2132.
|
14 |
ZHANG L F, YU M Z, CHEN T, et al. Auxiliary training: towards accurate and robust models[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2020: 21-30.
|
15 |
纪守领, 杜天宇, 邓水光, 等. 深度学习模型鲁棒性研究综述. 计算机学报, 2022, 45 (1): 190- 206.
|
|
JI S L , DU T Y , DENG S G , et al. Robustness certification research on deep learning models: a survey. Chinese Journal of Computers, 2022, 45 (1): 190- 206.
|
16 |
|
17 |
SERBAN A , POLL E , VISSER J . Adversarial examples on object recognition. ACM Computing Surveys, 2021, 53 (3): 1- 38.
|
18 |
王建明, 陈响育, 杨自忠, 等. 不同数据增强方法对模型识别精度的影响. 计算机科学, 2022, 49 (S1): 418- 423.
|
|
WANG J M , CHEN X Y , YANG Z Z , et al. Influence of different data augmentation methods on model recognition accuracy. Computer Science, 2022, 49 (S1): 418- 423.
|
19 |
HENDRYCKS D, MU N, CUBUK E D, et al. AugMix: a simple data processing method to improve robustness and uncertainty[C]//Proceedings of International Conference on Learning Representations. [S. l.]: AAAI Press, 2019: 1-8.
|
20 |
YUN S, HAN D, CHUN S, et al. CutMix: regularization strategy to train strong classifiers with localizable features[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Washington D C., USA: IEEE Press, 2019: 6023-6032.
|
21 |
|
22 |
|
23 |
|
24 |
HE K M, ZHANG X, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2015: 1062-1071.
|
25 |
|
26 |
SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2015: 1025-1030.
|
27 |
SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 1-10.
|