1 |
曹玉红, 徐海, 刘荪傲, 等. 基于深度学习的医学影像分割研究综述. 计算机应用, 2021, 41 (8): 2273- 2287.
|
|
CAO Y H , XU H , LIU S A , et al. Review of deep learning-based medical image segmentation. Journal of Computer Applications, 2021, 41 (8): 2273- 2287.
|
2 |
FISCHBACH F , KNOLLMANN F , GRIESSHABER V , et al. Detection of pulmonary nodules by multislice computed tomography: improved detection rate with reduced slice thickness. European Radiology, 2003, 13 (10): 2378- 2383.
doi: 10.1007/s00330-003-1915-7
|
3 |
ROBERTS M , DRIGGS D , THORPE M , et al. Common pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scans. Nature Machine Intelligence, 2021, 3, 199- 217.
doi: 10.1038/s42256-021-00307-0
|
4 |
|
5 |
HASAN A M , AL-JAWAD M M , JALAB H A , et al. Classification of COVID-19 coronavirus, pneumonia and healthy lungs in CT scans using Q-deformed entropy and deep learning features. Entropy, 2020, 22 (5): 517.
doi: 10.3390/e22050517
|
6 |
WANG J , BAO Y M , WEN Y F , et al. Prior-attention residual learning for more discriminative COVID-19 screening in CT images. IEEE Transactions on Medical Imaging, 2020, 39 (8): 2572- 2583.
doi: 10.1109/TMI.2020.2994908
|
7 |
CHEN L C , ZHU Y K , PAPANDREOU G , et al. Encoder-decoder with atrous separable convolution for semantic image segmentation. Berlin, Germany: Springer, 2018.
|
8 |
FAN D P , ZHOU T , JI G P , et al. Inf-net: automatic COVID-19 lung infection segmentation from CT images. IEEE Transactions on Medical Imaging, 2020, 39 (8): 2626- 2637.
doi: 10.1109/TMI.2020.2996645
|
9 |
冉智强. 基于深度学习的新冠肺炎CT图像辅助诊断研究[D]. 重庆: 重庆理工大学, 2022.
|
|
RAN Z Q. Research on COVID-19 CT image aided diagnosis based on deep learning[D]. Chongqing: Chongqing University of Technology, 2022. (in Chinese)
|
10 |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: transformers for image recognition at scale[EB/OL]. [2023-09-30]. https://arxiv.org/abs/2010.11929.
|
11 |
CAO H , WANG Y Y , CHEN J , et al. Swin-Unet: Unet-like pure transformer for medical image segmentation. Berlin, Germany: Springer, 2023.
|
12 |
YAN K , TANG Y B , PENG Y F , et al. MULAN: multitask universal lesion analysis network for joint lesion detection, tagging, and segmentation. Berlin, Germany: Springer, 2019.
|
13 |
AYAAN H, ABDULLAH-AL-ZUBAER I, ADAM W, et al. MultiMix: sparingly supervised, extreme multitask learning from medical Images[EB/OL]. [2023-09-30]. https://arxiv.org/abs/2010.14731v2.
|
14 |
ZHU M Z, LI H T, CHEN H, et al. SegPrompt: boosting open-world segmentation via category-level prompt learning[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2023: 235-248.
|
15 |
PATIL D , DEORE S G . Medical image segmentation: a review. International Journal of Computer Science & Mobile, 2021, 66, 22- 27.
|
16 |
|
17 |
RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin, Germany: Springer International Publishing, 2015: 234-241.
|
18 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE Press, 2018: 684-686.
|
19 |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2018: 3-19.
|
20 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 770-778.
|
21 |
|
22 |
ZHANG Y , YANG Q . A survey on multi-task learning. IEEE Transactions on Knowledge and Data Engineering, 2022, 34 (12): 5586- 5609.
doi: 10.1109/TKDE.2021.3070203
|
23 |
|
24 |
|
25 |
|
26 |
|
27 |
|