作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2025, Vol. 51 ›› Issue (1): 332-342. doi: 10.19678/j.issn.1000-3428.0068786

• 开发研究与工程应用 • 上一篇    

基于注意力机制与多任务的肺部疾病诊断方法

刘兆伟*(), 方艳红, 郑明宇, 锁斌   

  1. 西南科技大学信息工程学院, 四川 绵阳 621010
  • 收稿日期:2023-11-07 出版日期:2025-01-15 发布日期:2024-04-15
  • 通讯作者: 刘兆伟
  • 基金资助:
    国家自然科学基金(U1830133)

Lung Disease Diagnosis Method Based on Attention Mechanism and Multi-tasking

LIU Zhaowei*(), FANG Yanhong, ZHENG Mingyu, SUO Bin   

  1. College of Information Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
  • Received:2023-11-07 Online:2025-01-15 Published:2024-04-15
  • Contact: LIU Zhaowei

摘要:

肺部疾病存在种类多、病灶区域小的特点, 现有数据集也存在数据量小的问题, 导致模型效果不理想。为提高诊断效果, 提出一种基于多任务联合注意力机制的肺部诊断网络(ASNet)。基于U-Net构建多任务诊断网络, 在原有病灶分割任务基础上加入病理分类任务, 加强任务之间的联系, 以分割任务为辅, 提升分类任务准确率; 提出多尺度挤压激励模块, 加强空间和通道之间的信息融合; 引入一种轴向注意力机制, 强调全局上下文信息和位置信息缓解由于医疗数据匮乏引起的欠拟合问题; 设计自适应多任务混合损失函数, 实现分割和分类任务损失权重的均衡。在自建数据集上的实验结果表明, 提出网络在病灶分割任务上的Dice系数、特异性(SP)、灵敏度(SE)、HD距离和准确率的平均结果分别为81.1%、99.0%、84.1%、24.6 mm和97.5%, 优于SAUNet++、SwinUnet等其他先进分割网络; 在病理分类任务上比MobileNetV2网络在精确率、召回率和准确率指标上分别提升了2.0、1.8和1.7百分点, 明显提升了在分类和分割上的精度, 对小目标病灶分割效果更佳, 其在合理的参数量下更适用于协助肺部疾病诊断。

关键词: 深度学习, 信息融合, 疾病诊断, 多任务联合学习, 注意力机制, 医学图像分割

Abstract:

There are many types of lung diseases and small lesion areas. Furthermore, existing datasets have limited data volumes, resulting in unsatisfactory model results. To improve the diagnostic effect, a lung diagnosis Network(ASNet) based on multitask joint attention is proposed. A multitask diagnostic network is constructed using U-Net, with pathological classification tasks integrated into the original lesion segmentation tasks. This integration strengthens the connection between tasks, allowing for supplementation via segmentation tasks and improving the accuracy of classification tasks. A multiscale squeeze excitation module is proposed to enhance spatial and information fusion between channels, along with an axial attention mechanism to emphasize global context and location information. This approach aims to mitigate the underfitting problem caused by limited medical data. Additionally, an adaptive multitask hybrid loss function is designed to achieve segmentation and classification tasks with loss weighted equilibrium. Detailed experiments are conducted using a self-built dataset. The experimental results on this self-built dataset indicate that the proposed network achieves an average Dice coefficient, Specificity(SP), Sensitivity(SE), Hausdorff Distance(HD), and accuracy for the focal segmentation task of 81.1%, 99.0%, 84.1%, 24.6 mm, and 97.5%, respectively. Superior to SAUNet++, SwinUnet and other advanced segmentation networks. Compared to the MobileNetV2 network, the accuracy rate, recall rate, and accuracy index for pathological classification tasks are improved by 2.0, 1.8, and 1.7 percentage points, respectively. These improvements significantly enhance the accuracy of classification and segmentation, leading to better segmentation of small target lesions, thus making the method more suitable for assisting in lung disease diagnosis with a reasonable number of parameters.

Key words: deep learning, information fusion, disease diagnosis, multi-task joint learning, attention mechanism, medical image segmentation