1 |
连鹏隆. 基于深度学习的复杂工业过程软测量方法研究[D]. 西安: 西安理工大学, 2020.
|
|
LIAN P L. Research on soft sensing method ofcomplex industrial process based on deep learning[D]. Xi'an: Xi'an University of Technology, 2020. (in Chinese)
|
2 |
罗顺桦, 王振雷, 王昕. 基于二子空间协同训练算法的半监督软测量建模. 化工学报, 2022, 73 (3): 1270- 1279.
|
|
LUO S H , WANG Z L , WANG X . Semi-supervised soft sensor modeling based on two-subspace co-training algorithm. Journal of Chemical Industry and Technology, 2022, 73 (3): 1270- 1279.
|
3 |
陈亚瑞, 张芝慧, 杨剑宁, 等. 基于多模态生成模型的半监督学习. 天津科技大学学报, 2022, 37 (2): 43- 50.
|
|
CHEN Y R , ZHANG Z H , YANG J N , et al. Semi-supervised learning based on multimodal generative model. Journal of Tianjin University of Science [WT《Times New Roman》]& Technology, 2022, 37 (2): 43- 50.
|
4 |
CANG W T , YANG H Z . Adaptive soft sensor method based on online selective ensemble of partial least squares for quality prediction of chemical process. Asia-Pacific Journal of Chemical Engineering, 2019, 14 (5): 1- 12.
|
5 |
王毅红, 张建雄, 兰官奇, 等. 压制生土砖强度的人工神经网络预测模型. 华南理工大学学报(自然科学版), 2020, 48 (7): 115- 121.
|
|
WANG Y H , ZHANG J X , LAN G Q , et al. Artificial neural network prediction model forcompressive strength ofcompacted earth blocks. Journal of South China University of Technology (Natural Science Edition), 2020, 48 (7): 115- 121.
|
6 |
李元, 张昊展, 唐晓初. 基于多模态数据全信息的概率主成分分析故障检测研究. 仪器仪表学报, 2021, 42 (2): 75- 85.
|
|
LI Y , ZHANG H Z , TANG X C . Study on probabilistic principalcomponent analysis fault detection based on full information of multimodal data. Chinese Journal of Scientific Instrument, 2021, 42 (2): 75- 85.
|
7 |
KENNEDY N , WIN T L , BANDYOPADHYAY A , et al. Insights from linking police domestic abuse data and health data in South Wales, UK: a linked routine data analysis using decision tree classification. The Lancet Public Health, 2023, 8 (8): e629- e638.
doi: 10.1016/S2468-2667(23)00126-3
|
8 |
VAPNIK V N . Statistical learning theory. New York, USA: Wiley, 1998.
|
9 |
VOMMI A M , BATTULA T K . A hybrid filter-wrapper feature selection using fuzzy KNN based on Bonferroni mean for medical datasets classification: a COVID-19 case study. Expert Systems with Applications, 2023, 218, 119612.
doi: 10.1016/j.eswa.2023.119612
|
10 |
RIZWAN-ul-HASSAN , LI C G , LIU Y T . Online dynamic security assessment of wind integrated power system using SDAE with SVM ensemble boosting learner. International Journal of Electrical Power [WT《Times New Roman》]& Energy Systems, 2021, 125, 106429.
|
11 |
RAO L B , PANG T , JI R S , et al. Combined with stack autoencoder-extreme learning machine method. Progress in Laser and Optoelectronics, 2019, 56 (11): 247- 253.
|
12 |
KHALIL R A , JONES E , BABAR M I , et al. Speech emotion recognition using deep learning techniques: a review. IEEE Access, 2019, 7, 117327- 117345.
doi: 10.1109/ACCESS.2019.2936124
|
13 |
HOU L , LUO X Y , WANG Z Y , et al. Representation learning via a semi-supervised stacked distance autoencoder for image classification. Frontiers of Information Technology [WT《Times New Roman》]& Electronic Engineering, 2020, 21 (7): 1005- 1018.
|
14 |
HINTON G E , OSINDERO S , TEH Y W . A fast learning algorithm for deep belief nets. Neural Computation, 2006, 18 (7): 1527- 1554.
|
15 |
HAO X , ZHANG G G , MA S . Deep learning. International Journal of Semantic Computing, 2016, 10 (3): 417- 439.
|
16 |
VINCENT P , LAROCHELLE H , LAJOIE I , et al. Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. Journal of Machine Learning Research, 2010, 11, 3371- 3408.
|
17 |
张国令, 王晓丹, 李睿, 等. 基于栈式降噪稀疏自编码器的极限学习机. 计算机工程, 2020, 46 (9): 61- 67.
|
|
ZHANG G L , WANG X D , LI R , et al. Extreme learning machine based on stacked denoising sparse auto-encoder. Computer Engineering, 2020, 46 (9): 61- 67.
|
18 |
LEI Y X , KARIMI H R , CEN L H , et al. Processes soft modeling based on stacked autoencoders and wavelet extreme learning machine for aluminum plant-wide application. Control Engineering Practice, 2021, 108, 104706.
|
19 |
SCHÖLKOPF B, PLATT J, HOFMANN T. Efficient learning of sparse representations with an energy-based model[C]//SCHÖLKOPF B, PLATT J, HOFMANN T. Advances in neural information processing systems 19: proceedings of the 2006 conference. Cambridge, USA: MIT Press, 2006: 1137-1144.
|
20 |
DINESH P S , MANIKANDAN M . Fully convolutional deep stacked denoising sparse auto encoder network for partial face reconstruction. Pattern Recognition, 2022, 130, 108783.
|
21 |
XING C , MA L , YANG X Q . Stacked denoise autoencoder based feature extraction and classification for hyperspectral images. Journal of Sensors, 2016, 2016, 3632943.
|
22 |
LONG J , LIANG W , LI K C , et al. A regularized cross-layer ladder network for intrusion detection in industrial Internet of Things. IEEE Transactions on Industrial Informatics, 2023, 19 (2): 1747- 1755.
|
23 |
NAIR V, HINTON G E. Rectified linear units improve restricted Boltzmann machines[C]//Proceedings of the 27th International Conference on Machine Learning. New York, USA: ACM Press, 2010: 807-814.
|
24 |
VINCENT P, LAROCHELLE H, BENGIO Y, et al. Extracting andcomposing robust features with denoising autoencoders[C]//Proceedings of the 25th International Conference on Machine Learning. New York, USA: ACM Press, 2008: 1096-1103.
|
25 |
|
26 |
DU Y P , YAO C Q , HUO S H , et al. A new item-based deep network structure using a restricted Boltzmann machine for collaborative filtering. Frontiers of Information Technology [WT《Times New Roman》]& Electronic Engineering, 2017, 18 (5): 658- 666.
|
27 |
YANG P H , CHEN J R , ZHANG H R , et al. A fault identification method for electric submersible pumps based on DAE-SVM. Shock and Vibration, 2022, 2022, 5868630.
|
28 |
YU X , YANG J , ZHANG J P . A transductive support vector machine algorithm based on spectral clustering. AASRI Procedia, 2012, 1, 384- 388.
|
29 |
唐兵. 以天然气为碳源的CVI法制备C/C复合材料的研究[D]. 长沙: 中南大学, 2009.
|
|
TANG B. Study on preparation of C/Ccomposites by CVI method with natural gas as carbon source[D]. Changsha: Central South University, 2009. (in Chinese)
|