| 1 |
DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//Proceedings of 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2005: 886-893.
|
| 2 |
OJALA T, PIETIKAINEN M, MAENPAA T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 971- 987.
doi: 10.1109/TPAMI.2002.1017623
|
| 3 |
HE K M, ZHANG X Y, REN S Q, et al. deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2016: 770-778.
|
| 4 |
VASWANI A, SHAZEER N M, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2017: 6000-6010.
|
| 5 |
谢虹, 姜文刚. RRA-InceptionV3结合鲁棒稀疏表示的表情识别方法. 计算机工程, 2023, 49(7): 196- 203.
doi: 10.19678/j.issn.1000-3428.0064914
|
|
XIE H, JIANG W G. RRA-InceptionV3 combined robust sparse representation method for expression recognition. Computer Engineering, 2023, 49(7): 196- 203.
doi: 10.19678/j.issn.1000-3428.0064914
|
| 6 |
丰芳宇, 罗晓曙, 蒙志明, 等. 基于抗混叠残差注意力网络的人脸表情识别. 计算机工程, 2023, 49(8): 190- 198.
doi: 10.19678/j.issn.1000-3428.0065224
|
|
FENG F Y, LUO X S, MENG Z M, et al. Facial expression recognition based on anti-aliasing residual attention network. Computer Engineering, 2023, 49(8): 190- 198.
doi: 10.19678/j.issn.1000-3428.0065224
|
| 7 |
ZHU J, LUO B, YANG T, et al. Knowledge conditioned variational learning for one-class facial expression recognition. IEEE Transactions on Image Processing, 2023, 32, 4010- 4023.
doi: 10.1109/TIP.2023.3293775
|
| 8 |
ZHENG C, MATIAS M, CHEN C. POSTER: a pyramid cross-fusion transformer network for facial expression recognition[C]//Proceedings of IEEE/CVF International Conference on Computer Vision Workshops (ICCVW). Washington D.C., USA: IEEE Press, 2022: 3138-3147.
|
| 9 |
KIRILLOV A, MINTUN E, RAVI N, et al. Segment anything[C]//Proceedings of 2023 IEEE/CVF International Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2023: 3992-4003.
|
| 10 |
HE K M, CHEN X L, XIE S N, et al. Masked autoencoders are scalable vision learners[C]//Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2022: 15979-15988.
|
| 11 |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: transformers for image recognition at scale[C]//Proceedings of the 9th International Conference on Learning Representations(ICLR). [S. l. ]: AAAI Press, 2021: 12-18.
|
| 12 |
|
| 13 |
DENG J K, GUO J, YANG J, et al. ArcFace: additive angular margin loss for deep face recognition[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2018: 4685-4694.
|
| 14 |
XUE F L, WANG Q C, GUO G D. TransFER: learning relation-aware facial expression representations with Transformers[C]//Proceedings of IEEE/CVF International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2021: 3581-3590.
|
| 15 |
ZHAO G Y, PIETIKAINEN N. Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2007, 29(6): 915- 928.
|
| 16 |
SHAN C F, GONG S G, MCOWAN P W. Facial expression recognition based on local binary patterns: a comprehensive study. Image and Vision Computing, 2009, 27(6): 803- 816.
doi: 10.1016/j.imavis.2008.08.005
|
| 17 |
SAVCHENKO A V. Facial expression and attributes recognition based on multi-task learning of lightweight neural networks[C]//Proceedings of the 19th International Symposium on Intelligent Systems and Informatics (SISY). Washington D.C., USA: IEEE Press, 2021: 119-124.
|
| 18 |
HOWARD A G, ZHU M L, CHEN B, et al. MobileNet: efficient convolutional neural networks for mobile vision applications[EB/OL]. [2024-02-05]. https://arxiv.org/pdf/1704.04861.
|
| 19 |
|
| 20 |
|
| 21 |
王军, 赵凯, 程勇. 基于遮挡感知卷积神经网络的面部表情识别模型. 计算机工程, 2021, 47(10): 242- 251.
doi: 10.19678/j.issn.1000-3428.0059166
|
|
WANG J, ZHAO K, CHENG Y. Facial expression recognition model based on convolutional neural network with occlusion perception. Computer Engineering, 2021, 47(10): 242- 251.
doi: 10.19678/j.issn.1000-3428.0059166
|
| 22 |
SANG D V, CUONG L T B, HA T P, et al. Discriminative deep feature learning for facial emotion recognition[C]//Proceedings of the 1st International Conference on Multimedia Analysis and Pattern Recognition (MAPR). Washington D.C., USA: IEEE Press, 2018: 1-6.
|
| 23 |
VO T H, LEE G S, YANG H J, et al. Pyramid with super resolution for in-the-wild facial expression recognition. IEEE Access, 2020, 8, 131988- 132001.
doi: 10.1109/ACCESS.2020.3010018
|
| 24 |
冉瑞生, 翁稳稳, 王宁, 等. 基于人脸关键特征提取的表情识别. 计算机工程, 2023, 49(2): 254- 262.
doi: 10.19678/j.issn.1000-3428.0063715
|
|
RAN R S, WENG W W, WANG N, et al. Expression recognition based on the extraction of key facial features. Computer Engineering, 2023, 49(2): 254- 262.
doi: 10.19678/j.issn.1000-3428.0063715
|
| 25 |
HUANG Y F, TSAI C H. PIDViT: pose-invariant distilled vision transformer for facial expression recognition in the wild. IEEE Transactions on Affective Computing, 2023, 14, 3281- 3293.
doi: 10.1109/TAFFC.2022.3220972
|
| 26 |
CHANG D, YIN Y F, LI Z J, et al. LibreFace: an open-source Toolkit for deep facial expression analysis[C]//Proceedings of IEEE/CVF Winter Conference on Applications of Computer Vision. Washington D.C., USA: IEEE Press, 2024: 8190-8200.
|
| 27 |
蓝峥杰, 王烈, 聂雄. 一种基于词频-逆文档频率和混合损失的表情识别算法. 计算机工程, 2023, 49(1): 295-302, 310.
doi: 10.19678/j.issn.1000-3428.0063455
|
|
LAN Z J, WANG L, NIE X. An expression recognition algorithm based on term frequency-inverse document frequency and hybrid loss. Computer Engineering, 2023, 49(1): 295-302, 310.
doi: 10.19678/j.issn.1000-3428.0063455
|
| 28 |
MA F Y, SUN B, LI S T. Facial expression recognition with visual transformers and attentional selective fusion. IEEE Transactions on Affective Computing, 2021, 14, 1236- 1248.
|
| 29 |
NAKAMURA F, MURAKAMI M, SUZUKI K, et al. Analyzing the effect of diverse gaze and head direction on facial expression recognition with photo-reflective sensors embedded in a head-mounted display. IEEE Transactions on Visualization and Computer Graphics, 2023, 29(10): 4124- 4139.
doi: 10.1109/TVCG.2022.3179766
|
| 30 |
KHAN F. Facial expression recognition using facial landmark detection and feature extraction via neural networks[EB/OL]. [2024-02-05]. https://arxiv.org/pdf/1812.04510.
|
| 31 |
李晶, 李健, 陈海丰, 等. 基于关键区域遮挡与重建的人脸表情识别. 计算机工程, 2024, 50(5): 241- 249.
doi: 10.19678/j.issn.1000-3428.0067538
|
|
LI J, LI J, CHEN H F, et al. Facial expression recognition based on key region masking and reconstruction. Computer Engineering, 2024, 50(5): 241- 249.
doi: 10.19678/j.issn.1000-3428.0067538
|
| 32 |
CARON M, TOUVRON H, MISRA I, et al. Emerging properties in self-supervised vision transformers[C]//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2021: 9630-9640.
|
| 33 |
谢斌, 刘阳倩, 李俞霖. 结合极化自注意力和Transformer的结直肠息肉分割方法. 光电工程, 2024, 51(10): 240179.
|
|
XIE B, LIU Y Q, LI Y L. Colorectal polyp segmentation method combining polarized self-attention and Transformer. Opto-Electronic Engineering, 2024, 51(10): 240179.
|
| 34 |
LI S, DENG W H, DU J P, et al. Reliable crowdsourcing and deep locality-preserving learning for expression recognition in the wild[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2017: 2584-2593.
|
| 35 |
MOLLAHOSSEINI A, HASANI B, MAHOOR M H. AffectNet: a database for facial expression, valence, and arousal computing in the wild. IEEE Transactions on Affective Computing, 2017, 10(1): 18- 31.
|
| 36 |
|
| 37 |
CHEN S K, WANG J F, CHEN Y D, et al. Label distribution learning on auxiliary label space graphs for facial expression recognition[C]//Proceeding of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2020: 13981-13990.
|
| 38 |
FARZANEH A H, QI X J. Facial expression recognition in the wild via deep attentive center loss[C]//Proceedings of 2021 IEEE Winter Conference on Applications of Computer Vision (WACV). Washington D.C., USA: IEEE Press, 2021: 2401-2410.
|
| 39 |
LI H Y, WANG N N, DING X P, et al. Adaptively learning facial expression representation via C-F labels and distillation. IEEE Transactions on Image Processing, 2021, 30, 2016- 2028.
doi: 10.1109/TIP.2021.3049955
|
| 40 |
SHE J H, HU Y B, SHI H L, et al. Dive into ambiguity: latent distribution mining and pairwise uncertainty estimation for facial expression recognition[C]//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2021: 6244-6253.
|
| 41 |
ZENG D, LIN Z K, YAN X, et al. Face2Exp: combating data biases for facial expression recognition[C]//Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2022: 20259-20268.
|
| 42 |
ZHANG Y, WANG C, LING X, et al. Learn from all: erasing attention consistency for noisy label facial expression recognition[EB/OL]. [2024-02-05]. https://arxiv.org/pdf/2207.10299.
|
| 43 |
|
| 44 |
FAN Y, WANG T, WANG X F. Student classroom behavior detection based on YOLOv7-BRA and multi-model fusion[EB/OL]. [2024-02-05]. https://arxiv.org/pdf/2305.07825.
|
| 45 |
|
| 46 |
|