| 1 |
任琳. "工业4.0": 新一轮工业革命的代表[J]. 世界知识, 2015(9): 56-57.
|
|
REN L. "Industry 4.0": the representative of the new round of industrial revolution[J]. World Affairs, 2015(9): 56-57. (in Chinese)
|
| 2 |
宫小冬. 计算机通信与电子信息技术在人工智能领域中的应用. 自动化应用, 2023 (10): 236- 238.
|
|
GONG X D . Application of computer communication and electronic information technology in the field of artificial intelligence. Automation Application, 2023 (10): 236- 238.
|
| 3 |
陈锦柯. 人工智能在计算机视觉及网络领域中的应用. 电子技术与软件工程, 2020 (8): 140- 141.
|
|
CHEN J K . Application of artificial intelligence in computer vision and network field. Electronic Technology & Software Engineering, 2020 (8): 140- 141.
|
| 4 |
CHEN Y F, LIANG G Y, LEE K K, et al. Abnormal behavior detection by multi-SVM-based Bayesian network[C]//Proceedings of the International Conference on Information Acquisition. Washington D.C., USA: IEEE Press, 2007: 298-303.
|
| 5 |
ANTONAKAKI P , KOSMOPOULOS D , PERANTONIS S J . Detecting abnormal human behaviour using multiple cameras. Signal Processing, 2009, 89 (9): 1723- 1738.
doi: 10.1016/j.sigpro.2009.03.016
|
| 6 |
PARK K, LIN Y, METSIS V, et al. Abnormal human behavioral pattern detection in assisted living environments[C]//Proceedings of the 3rd International Conference on Pervasive Technologies Related to Assistive Environments. New York, USA: ACM Press, 2010: 1-8.
|
| 7 |
COŞAR S , DONATIELLO G , BOGORNY V , et al. Toward abnormal trajectory and event detection in video surveillance. IEEE Transactions on Circuits and Systems for Video Technology, 2017, 27 (3): 683- 695.
doi: 10.1109/TCSVT.2016.2589859
|
| 8 |
SABOKROU M , FATHY M , MOAYED Z , et al. Fast and accurate detection and localization of abnormal behavior in crowded scenes. Machine Vision and Applications, 2017, 28 (8): 965- 985.
doi: 10.1007/s00138-017-0869-8
|
| 9 |
HSU S C, CHUANG C H, HUANG C L, et al. A video-based abnormal human behavior detection for psychiatric patient monitoring[C]//Proceedings of the International Workshop on Advanced Image Technology (IWAIT). Washington D.C., USA: IEEE Press, 2018: 1-4.
|
| 10 |
WANG J , XIA L M . Abnormal behavior detection in videos using deep learning. Cluster Computing, 2019, 22 (4): 9229- 9239.
|
| 11 |
JI H X, ZENG X L, LI H G, et al. Human abnormal behavior detection method based on T-TINY-YOLO[C]//Proceedings of the 5th International Conference on Multimedia and Image Processing. New York, USA: ACM Press, 2020: 1-5.
|
| 12 |
FAN Z Y , YIN J Y , SONG Y , et al. Real-time and accurate abnormal behavior detection in videos. Machine Vision and Applications, 2020, 31 (7): 72.
|
| 13 |
FU Y L , DENG R , XUE B , et al. Research on detection and recognition of abnormal behavior in video. Journal of Physics: Conference Series, 2020, 1601 (3): 032042.
doi: 10.1088/1742-6596/1601/3/032042
|
| 14 |
AL-DHAMARI A , SUDIRMAN R , MAHMOOD N H . Abnormal behavior detection using sparse representations through sequential generalization of k-means. Turkish Journal of Electrical Engineering & Computer Sciences, 2021, 29 (1): 152- 168.
|
| 15 |
LI Z H , ZHANG J , WEN Y J , et al. A multiscale fusion YOLOV3-based model for human abnormal behavior detection in special scenarios. Journal of Transportation Engineering, Part A: Systems, 2023, 149 (2): 04022150.
doi: 10.1061/JTEPBS.TEENG-7130
|
| 16 |
HAO Y X , TANG Z Y , ALZAHRANI B , et al. An end-to-end human abnormal behavior recognition framework for crowds with mentally disordered individuals. IEEE Journal of Biomedical and Health Informatics, 2022, 26 (8): 3618- 3625.
doi: 10.1109/JBHI.2021.3122463
|
| 17 |
BAI Y M , WANG Y , WU S S . Detection of abnormal human behavior in video images based on a hybrid approach. International Journal of Advanced Computer Science and Applications, 2022, 13 (11): 346- 357.
|
| 18 |
黄涛, 邬开俊, 王迪聪, 等. 基于改进型时间分段网络的视频异常检测. 计算机工程, 2022, 48 (11): 137- 144.
doi: 10.19678/j.issn.1000-3428.0062691
|
|
HUANG T , WU K J , WANG D C , et al. Video anomaly detection based on improved time segmentation network. Computer Engineering, 2022, 48 (11): 137- 144.
doi: 10.19678/j.issn.1000-3428.0062691
|
| 19 |
张红民, 庄旭, 郑敬添. 改进重建和预测网络的人体异常行为检测方法. 计算机工程与应用, 2024, 60 (17): 216- 223.
|
|
ZHANG H M , ZHAUNG X , ZHENG J T . Improve human abnormal behavior detection method of reconstruction and prediction network. Computer Engineering and Applications, 2024, 60 (17): 216- 223.
|
| 20 |
肖方媛, 张艳玲, 田军委. 基于改进TSN的人体异常行为检测算法分析. 电子技术, 2023, 52 (1): 34- 36.
|
|
XIAO F Y , ZHANG Y L , TIAN J W . Analysis of improving the worker anomaly detection algorithm for TSN. Electronic Technology, 2023, 52 (1): 34- 36.
|
| 21 |
李聪林, 王琪冰, 陆佳炜, 等. 基于数字孪生的电梯乘客异常行为建模与识别方法. 计算机工程与应用, 2023, 59 (19): 274- 284.
|
|
LI C L , WANG Q B , LU J W , et al. Modeling and recognition method of elevator passenger abnormal behavior based on digital twin. Computer Engineering and Applications, 2023, 59 (19): 274- 284.
|
| 22 |
BERTASIUS G, WANG H, TORRESANI L. Is space-time attention all you need for video understanding?[C]//Proceedings of the 38th International Conference on Machine Learning. [S. l. ]: PMLR, 2021: 813-824.
|
| 23 |
ROSENHAN D , SELIGMAN M . Abnormal psychology. 3rd ed New York, USA: W.W. Norton & Company, Inc., 1992.
|
| 24 |
LIN J, GAN C, HAN S. TSM: temporal shift module for efficient video understanding[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). Washington D.C., USA: IEEE Press, 2019: 7082-7092.
|
| 25 |
JOHNSON R, ZHANG T. Accelerating stochastic gradient descent using predictive variance reduction[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2013: 315-323.
|