1 |
杨甲甲, 刘国龙, 赵俊华, 等. 采用长短期记忆深度学习模型的工业负荷短期预测方法. 电力建设, 2018, 39(10): 20- 27.
URL
|
|
YANG J J, LIU G L, ZHAO J H, et al. A long short term memory based deep learning method for industrial load forecasting. Electric Power Construction, 2018, 39(10): 20- 27.
URL
|
2 |
康重庆, 夏清, 张伯明. 电力系统负荷预测研究综述与发展方向的探讨. 电力系统自动化, 2004, 28(17): 1- 11.
doi: 10.3321/j.issn:1000-1026.2004.17.001
|
|
KANG C Q, XIA Q, ZHANG B M. Review of power system load forecasting and its development. Automation of Electric Power Systems, 2004, 28(17): 1- 11.
doi: 10.3321/j.issn:1000-1026.2004.17.001
|
3 |
HONG T, PINSON P, FAN S, et al. Probabilistic energy forecasting: global energy forecasting competition 2014 and beyond. International Journal of Forecasting, 2016, 32(3): 896- 913.
doi: 10.1016/j.ijforecast.2016.02.001
|
4 |
BRACALE A, CARPINELLI G, DE FALCO P, et al. Short-term industrial load forecasting: a case study in an Italian factory[C]//Proceedings of the IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe). Washington D. C., USA: IEEE Press, 2017: 1-6.
|
5 |
|
6 |
HUANG S J, SHIH K R. Short-term load forecasting via ARMA model identification including non-Gaussian process considerations. IEEE Transactions on Power Systems, 2003, 18(2): 673- 679.
doi: 10.1109/TPWRS.2003.811010
|
7 |
BRACALE A, DE FALCO P, CARPINELLI G. Comparing univariate and multivariate methods for probabilistic industrial load forecasting[C]//Proceedings of the 5th International Symposium on Environment-Friendly Energies and Applications (EFEA). Washington D. C., USA: IEEE Press, 2018: 1-6.
|
8 |
HONG T, FAN S. Probabilistic electric load forecasting: a tutorial review. International Journal of Forecasting, 2016, 32(3): 914- 938.
doi: 10.1016/j.ijforecast.2015.11.011
|
9 |
WANG Y Y, SUN S F, CHEN X Q, et al. Short-term load forecasting of industrial customers based on SVMD and XGBoost. International Journal of Electrical Power & Energy Systems, 2021, 129, 106830.
|
10 |
ZHU X Y, DANG Y G, DING S. Using a self-adaptive grey fractional weighted model to forecast Jiangsu's electricity consumption in China. Energy, 2020, 190, 116417.
doi: 10.1016/j.energy.2019.116417
|
11 |
杨德州, 刘嘉明, 宋汶秦, 等. 基于改进型自适应白噪声完备集成经验模态分解的工业用户负荷预测方法[J]. 电力系统保护与控制, 2022, 50(4): 36-43.
|
|
YANG D Z, LIU J M, SONG W Q, et al. A load forecasting method for industrial customers based on the ICEEMDAN algorithm[J]. Power System Protection and Control, 2022, 50(4): 36-43. (in Chinese)
|
12 |
JIANG H G, ZHANG Y C, MULJADI E, et al. A short-term and high-resolution distribution system load forecasting approach using support vector regression with hybrid parameters optimization. IEEE Transactions on Smart Grid, 2018, 9(4): 3341- 3350.
doi: 10.1109/TSG.2016.2628061
|
13 |
李啸骢, 李春涛, 从兰美, 等. 基于动态权值相似日选取算法的短期负荷预测. 电力系统保护与控制, 2017, 45(6): 1- 8.
URL
|
|
LI X C, LI C T, CONG L M, et al. Short-term load forecasting based on dynamic weight similar day selection algorithm. Power System Protection and Control, 2017, 45(6): 1- 8.
URL
|
14 |
TANG X L, DAI Y Y, WANG T, et al. Short-term power load forecasting based on multi-layer bidirectional recurrent neural network. IET Generation, Transmission & Distribution, 2019, 13(17): 3847- 3854.
|
15 |
HOCHREITER S, SCHMIDHUBER J. Long short-term memory. Neural Computation, 1997, 9(8): 1735- 1780.
doi: 10.1162/neco.1997.9.8.1735
|
16 |
王增平, 赵兵, 纪维佳, 等. 基于GRU-NN模型的短期负荷预测方法. 电力系统自动化, 2019, 43(5): 53- 58.
URL
|
|
WANG Z P, ZHAO B, JI W J, et al. Short-term load forecasting method based on GRU-NN model. Automation of Electric Power Systems, 2019, 43(5): 53- 58.
URL
|
17 |
ZHENG Z J, FENG L, WANG X, et al. Multi-energy load forecasting model based on bi-directional gated recurrent unit multi-task neural network[C]//Proceedings of E3S Web of Conferences. Paris, Franch: [s. n. ], 2021: 02032.
|
18 |
NIU D X, YU M, SUN L J, et al. Short-term multi-energy load forecasting for integrated energy systems based on CNN-BiGRU optimized by attention mechanism. Applied Energy, 2022, 313, 118801.
doi: 10.1016/j.apenergy.2022.118801
|
19 |
周思思, 李勇, 郭钇秀, 等. 考虑时序特征提取与双重注意力融合的TCN超短期负荷预测. 电力系统自动化, 2023, 47(18): 193- 205.
URL
|
|
ZHOU S S, LI Y, GUO Y X, et al. Ultra-short-term load forecasting based on temporal convolutional network considering temporal feature extraction and dual attention fusion. Automation of Electric Power Systems, 2023, 47(18): 193- 205.
URL
|
20 |
CHEN T Q, GUESTRIN C. XGBoost: a scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2016: 785-794.
|
21 |
SIAMI-NAMINI S, TAVAKOLI N, NAMIN A S. The performance of LSTM and BiLSTM in forecasting time series[C]//Proceedings of the IEEE International Conference on Big Data (Big Data). Washington D. C., USA: IEEE Press, 2019: 3285-3292.
|
22 |
YAMAK P T, LI Y J, GADOSEY P K. A comparison between ARIMA, LSTM, and GRU for time series forecasting[C]//Proceedings of the 2019 2nd International Conference on Algorithms, Computing and Artificial Intelligence. New York, USA: ACM Press, 2019: 49-55.
|
23 |
SEHOVAC L, GROLINGER K. Deep learning for load forecasting: sequence to sequence recurrent neural networks with attention. IEEE Access, 2020, 8, 36411- 36426.
|
24 |
JIAO R H, ZHANG T M, JIANG Y Z, et al. Short-term non-residential load forecasting based on multiple sequences LSTM recurrent neural network. IEEE Access, 2018, 6, 59438- 59448.
|
25 |
ABBASI R A, JAVAID N, GHUMAN M N J, et al. Short term load forecasting using XGBoost[C]//Proceedings of the International Conference on Advanced Information Networking and Applications. Berlin, Germany: Springer, 2019: 1120-1131.
|