| 1 |
王艾迪, 彭一川, 郎洪, 等. 基于YOLOX-Transformer两步模型的路面坑槽提取方法. 中国公路学报, 2023, 36 (12): 304- 317.
|
|
WANG A D , PENG Y C , LANG H , et al. Pavement pothole extraction based on YOLOX-Transformer two-step model. China Journal of Highway and Transport, 2023, 36 (12): 304- 317.
|
| 2 |
沙爱民, 童峥, 高杰. 基于卷积神经网络的路表病害识别与测量. 中国公路学报, 2018, 31 (1): 1- 10.
|
|
SHA A M , TONG Z , GAO J . Recognition and measurement of pavement disasters based on convolutional neural networks. China Journal of Highway and Transport, 2018, 31 (1): 1- 10.
|
| 3 |
王大为, 吕浩天, 汤伏蛟, 等. 三维探地雷达道路隐性病害检测分析与数字化技术综述. 中国公路学报, 2023, 36 (3): 1- 19.
|
|
WANG D W , LÜ H T , TANG F J , et al. Road structural defects detection and digitalization based on 3D ground penetrating radar technology: a state-of-the-art review. China Journal of Highway and Transport, 2023, 36 (3): 1- 19.
|
| 4 |
NIENABER S, BOOYSEN M J, KROON R. Detecting potholes using simple image processing techniques and real-world footage[C]//Proceedings of 34th Annual Southern African Transport Conference (SATC 2015). Singapore, Singapore: Springer, 2021: 153-164.
|
| 5 |
JANG D W , PARK R H . Pothole detection using spatio-temporal saliency. IET Intelligent Transport Systems, 2016, 10 (9): 605- 612.
doi: 10.1049/iet-its.2016.0006
|
| 6 |
AKAGIC A, BUZA E, OMANOVIC S. Pothole detection: an efficient vision based method using RGB color space image segmentation[C]//Proceedings of the 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO). Washington D. C., USA: IEEE Press, 2017: 1104-1109.
|
| 7 |
姜百浩, 刘静, 仇大伟, 等. 深度学习在脊柱图像分割中的应用综述. 计算机工程, 2024, 50 (3): 1- 15.
doi: 10.19678/j.issn.1000-3428.0067502
|
|
JIANG B H , LIU J , QIU D W , et al. Review of deep learning applications in spinal image segmentation. Computer Engineering, 2024, 50 (3): 1- 15.
doi: 10.19678/j.issn.1000-3428.0067502
|
| 8 |
贵向泉, 刘世清, 李立, 等. 基于改进YOLOv8的景区行人检测算法. 计算机工程, 2024, 50 (7): 342- 351.
doi: 10.19678/j.issn.1000-3428.0068125
|
|
GUI X Q , LIU S Q , LI L , et al. Pedestrian detection algorithm for scenic spots based on improved YOLOv8. Computer Engineering, 2024, 50 (7): 342- 351.
doi: 10.19678/j.issn.1000-3428.0068125
|
| 9 |
黄开基, 杨华. 基于深度学习特征的二维图像匹配算法综述. 计算机工程, 2024, 50 (10): 16- 34.
doi: 10.19678/j.issn.1000-3428.0068580
|
|
HUANG K J , YANG H . Review of 2D image matching algorithms based on deep learning features. Computer Engineering, 2024, 50 (10): 16- 34.
doi: 10.19678/j.issn.1000-3428.0068580
|
| 10 |
连哲, 殷雁君, 云飞, 等. 基于深度学习的自然场景文本检测综述. 计算机工程, 2024, 50 (3): 16- 27.
doi: 10.19678/j.issn.1000-3428.0067427
|
|
LIAN Z , YLN Y J , YUN F , et al. Review of natural scene text detection based on deep learning. Computer Engineering, 2024, 50 (3): 16- 27.
doi: 10.19678/j.issn.1000-3428.0067427
|
| 11 |
DHIMAN A , KLETTE R . Pothole detection using computer vision and learning. IEEE Transactions on Intelligent Transportation Systems, 2020, 21 (8): 3536- 3550.
doi: 10.1109/TITS.2019.2931297
|
| 12 |
DHIMAN A, CHIEN H J, KLETTE R. A multi-frame stereo vision-based road profiling technique for distress analysis[C]//Proceedings of the 15th International Symposium on Pervasive Systems, Algorithms and Networks (I-SPAN). Washington D. C., USA: IEEE Press, 2018: 7-14.
|
| 13 |
UKHWAH E N, YUNIARNO E M, SUPRAPTO Y K. Asphalt pavement pothole detection using deep learning method based on YOLO neural network[C]//Proceedings of the International Seminar on Intelligent Technology and Its Applications (ISITIA). Washington D. C., USA: IEEE Press, 2019: 35-40.
|
| 14 |
PAN Y F , ZHANG X F , CERVONE G , et al. Detection of asphalt pavement potholes and cracks based on the unmanned aerial vehicle multispectral imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11 (10): 3701- 3712.
doi: 10.1109/JSTARS.2018.2865528
|
| 15 |
|
| 16 |
DAI J F, QI H Z, XIONG Y W, et al. Deformable convolutional networks[C]//Proceedings of the IEEE International Conference on Computer Vision (ICCV). Washington D. C., USA: IEEE Press, 2017: 764-773.
|
| 17 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 7132-7141.
|
| 18 |
ZHU X Z, HU H, LIN S, et al. Deformable ConvNets V2: more deformable, better results[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2019: 9308-9316.
|
| 19 |
汤志康, 武毓琦, 李春英, 等. 基于知识图谱卷积网络的学习资源推荐. 计算机工程, 2024, 50 (9): 153- 160.
doi: 10.19678/j.issn.1000-3428.0068409
|
|
TANG Z K , WU Y Q , LI C Y , et al. Recommendation of learning resource based on knowledge graph convolutional network. Computer Engineering, 2024, 50 (9): 153- 160.
doi: 10.19678/j.issn.1000-3428.0068409
|
| 20 |
邓中港, 代刚, 吴湘宁, 等. 基于注意力机制和可变形卷积的金属表面细微不规则损伤的图像识别模型. 计算机工程与科学, 2023, 45 (1): 127- 135.
|
|
DENG Z G , DAI G , WU X N , et al. An image recognition model for minor and irregular damage on metal surface based on attention mechanism and deformable convolution. Computer Engineering[WT《Times New Roman》] & Science, 2023, 45 (1): 127- 135.
|
| 21 |
蔡俊民, 梁正友, 孙宇, 等. 基于可变形三维图卷积的轻量级点云分类研究. 计算机工程, 2024, 50 (9): 255- 265.
doi: 10.19678/j.issn.1000-3428.0067589
|
|
CAI J M , LIANG Z Y , SUN Y , et al. Research on lightweight point cloud classification based on deformable 3D graph convolution. Computer Engineering, 2024, 50 (9): 255- 265.
doi: 10.19678/j.issn.1000-3428.0067589
|
| 22 |
周新, 郭敬楠, 宁博, 等. IntSE: 特征增强的知识图谱补全方法. 小型微型计算机系统, 2023, 44 (9): 1961- 1965.
|
|
ZHOU X , GUO J N , NING B . IntSE: feature enhanced knowledge graph completion method. Journal of Chinese Computer Systems, 2023, 44 (9): 1961- 1965.
|
| 23 |
刘强, 张道畅. 结合SE的密集卷积生成对抗网络图像修复方法. 小型微型计算机系统, 2022, 43 (5): 1056- 1060.
|
|
LIU Q , ZHANG D C . Dense convolution generative adversarial network image inpainting method with SENet. Journal of Chinese Computer Systems, 2022, 43 (5): 1056- 1060.
|
| 24 |
赵璐璐, 王学营, 张翼, 等. 基于YOLOv5s融合SENet的车辆目标检测技术研究. 图学学报, 2022, 43 (5): 776- 782.
|
|
ZHAO L L , WANG X Y , ZHANG Y , et al. Vehicle target detection based on YOLOv5s fusion SENet. Journal of Graphics, 2022, 43 (5): 776- 782.
|
| 25 |
LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2017: 936-944.
|
| 26 |
LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 8759-8768.
|
| 27 |
TAN M X, PANG R M, LE Q V. EfficientDet: scalable and efficient object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2020: 10781-10790.
|
| 28 |
彭道刚, 潘俊臻, 王丹豪, 等. 基于改进YOLOv5的电厂管道油液泄漏检测. 电子测量与仪器学报, 2022, 36 (12): 200- 209.
|
|
PENG D G , PAN J Z , WANG D H , et al. Oil leakage detection of pipelines of power plants based on improved YOLOv5. Journal of Electronic Measurement and Instrumentation, 2022, 36 (12): 200- 209.
|
| 29 |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision (ICCV). Washington D. C., USA: IEEE Press, 2017: 2999-3007.
|
| 30 |
ZHANG Y F , REN W Q , ZHANG Z , et al. Focal and efficient IOU loss for accurate bounding box regression. Neurocomputing, 2022, 506, 146- 157.
doi: 10.1016/j.neucom.2022.07.042
|