作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2025, Vol. 51 ›› Issue (11): 226-234. doi: 10.19678/j.issn.1000-3428.0069671

• 图形图像处理 • 上一篇    下一篇

基于改进YOLOv8的实时坑槽检测算法

马荣贵, 黄训燕, 董世浩*()   

  1. 长安大学信息工程学院, 陕西 西安 710068
  • 收稿日期:2024-03-29 修回日期:2024-05-21 出版日期:2025-11-15 发布日期:2024-08-08
  • 通讯作者: 董世浩
  • 基金资助:
    国家重点研发计划(2021YFB1600104); 2020年度陕西省交通运输厅科研项目(20-24K, 20-25X)

Real-time Pothole Detection Algorithm Based on Improved YOLOv8

MA Ronggui, HUANG Xunyan, DONG Shihao*()   

  1. School of Information Engineering, Chang'an University, Xi'an 710068, Shaanxi, China
  • Received:2024-03-29 Revised:2024-05-21 Online:2025-11-15 Published:2024-08-08
  • Contact: DONG Shihao

摘要:

针对道路坑槽检测中存在坑槽大小不同、形状不规则导致的特征提取不完全及图像拍摄不满足道路检测车的视角问题, 收集并制作不同来源、视角和像素分辨率的坑槽数据集, 并对模型进行改进。首先在Backbone部分的C2f结构中引入DCNv3, 以获取更丰富完整的坑槽特征; 其次融合压缩和激励(SE)模块的注意力机制, 以提高对坑槽特征的提取能力; 然后在Neck部分融合双向特征金字塔网络(BiFPN)结构, 降低网络的计算量; 最后使用Focal-EIoU作为改进模型的损失函数, 降低复杂背景对网络检测性能的影响。改进后的YOLOv8-master网络相较于未改进前的网络, 坑槽检测精度提高了4.06%, 检测速度提高了85帧/s, 浮点运算量降低了19.54%。结果表明, 所提出的改进方法能有效提高原网络检测坑槽的性能, 相比目前主流的目标检测算法, 具有一定的先进性。

关键词: 坑槽检测, 可变形卷积, 压缩和激励模块, 双向特征金字塔网络, Focal-EIoU损失函数

Abstract:

To address the issues of incomplete feature extraction due to varying sizes and irregular shapes of potholes and the problem of image capturing not satisfying the perspective of road inspection vehicles during pothole detection, we have collected and created a pothole dataset from diverse sources, perspectives, and pixel resolutions, and further improved the model. First, we introduced DCNv3 into the C2f structure of the Backbone section to capture richer and more complete pothole features. Second, we integrated the attention mechanism of Squeeze-and-Excitation (SE) model to enhance the ability to extract pothole features. Third, we fused the BiFPN structure in the Neck section to reduce the computational complexity of the network. Finally, we used Focal-EIoU as the loss function of the improved model to minimize the impact of complex backgrounds on network detection performance. Compared to the unimproved network, the enhanced YOLOv8-master network achieved a 4.06% improvement in pothole detection accuracy, a detection speed boost to 85 frame per second, and a 19.54% reduction in floating-point operations. The results demonstrate that the proposed improvement method effectively enhances the original network's performance in detecting potholes and possesses certain advancements compared to currently mainstream object detection algorithms.

Key words: pothole detection, deformable convolution, Squeeze-and-Excitation (SE) module, Bidirectional Feature Pyramid Network (BiFPN), Focal-EIoU loss function