作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2022, Vol. 48 ›› Issue (4): 255-261. doi: 10.19678/j.issn.1000-3428.0060563

• 开发研究与工程应用 • 上一篇    下一篇

一种基于YOLOv4-TIA的林业害虫实时检测方法

候瑞环, 杨喜旺, 王智超, 高佳鑫   

  1. 中北大学 大数据学院, 太原 030051
  • 收稿日期:2021-01-12 修回日期:2021-03-12 发布日期:2021-04-06
  • 作者简介:候瑞环(1993—),女,硕士研究生,主研方向为图像识别、目标检测;杨喜旺,副教授、博士;王智超、高佳鑫,硕士研究生。

A Real-Time Detection Method for Forestry Pests Based on YOLOv4-TIA

HOU Ruihuan, YANG Xiwang, WANG Zhichao, GAO Jiaxin   

  1. College of Big Data, North University of China, Taiyuan 030051, China
  • Received:2021-01-12 Revised:2021-03-12 Published:2021-04-06

摘要: 针对现有基于深度学习的林业昆虫图像检测方法存在检测精度低和检测速度慢的问题,提出一种结合改进PANet结构与三分支注意力机制的目标检测方法YOLOv4-TIA。通过对样本数量较少的昆虫类别进行数据增强,实现样本均衡分布。利用三分支注意力机制改进YOLOv4中的CSPDarkNet53骨干网络,同时通过旋转操作和残差变换建立维度间的依存关系,以提高有效的特征通道权重,在PANet结构上增加将跳跃连接与跨尺度连接相结合的特征融合方式,从而获取更丰富的语义信息和位置信息。在此基础上,采用Focal loss函数优化分类损失,解决正负样本不均衡的问题。实验结果表明,该方法的精确率和召回率分别达到85.9%和91.2%,相比SSD、Faster R-CNN、YOLOv4方法,其在保证检测速度的同时,能够有效提高检测精度,且实现对林业害虫的实时精确监测。

关键词: 林业害虫检测, YOLOv4模型, 深度学习, 三分支注意力, Focal loss函数, 加权双向特征金字塔网络

Abstract: The existing forestry insect image detection methods based on Deep Learning(DL) have some problems such as low detection accuracy and slow detection speed.To address these problems, a YOLOv4-TIA target detection method combining improved PANet structure with three branch attention mechanisms is proposed.By enhancing the data of insect categories with a small number of samples, a balanced distribution of samples is realized.The three branch attention mechanism is used to improve the CSPDarkNet53 backbone network in YOLOv4.In addition, the rotation operation and residual transformation are used to establish the dependency relationship between dimensions, to improve the effective feature channel weight.The feature fusion method, combining jump connection and efficient multi-directional cross-scale connection, is added to the PANet structure, to obtain richer semantic and location information.The Focal loss function is used to optimize the classification loss to solve the problem of imbalance between positive and negative samples.The experimental results show that the accuracy and recall of the YOLOv4-TIA method reach 85.9% and 91.2%, respectively.Compared with SSD, Faster R-CNN, and YOLOv4 methods, the proposed method improves detection accuracy on the premise that detection speed can be ensured, and real-time monitoring of forestry pests can be realized.

Key words: forestry pests detection, YOLOv4 model, Deep Learning(DL), three branch attention, Focal loss function, weighted Bi-directional Feature Pyramid Network(BiFPN)

中图分类号: