[1] 王正宏.基于分形理论的林业害虫识别与分类方法的研究[D].哈尔滨:东北林业大学, 2010. WANG Z H.Research on recognition and classification method of forestry pests based on fractal theory[D].Ha'er bin:Northeast Forestry University, 2010.(in Chinese) [2] 周爱明.基于深度学习的农业灯诱害虫自动识别与计数技术的研究[D].杭州:浙江理工大学, 2019. ZHOU A M.Automated recognition and counting technique for agricultural light- trap pests based on deep learning[D].Hangzhou:Zhejiang Sci-Tech University, 2019.(in Chinese) [3] 潘春华, 肖德琴, 林探宇, 等.基于SVM和区域生长结合算法的南方主要蔬菜害虫分类识别[J].农业工程学报, 2018, 34(8):192-199. PAN C H, XIAO D Q, LIN T Y, et al.Classification and recognition for major vegetable pests in Southern China using SVM and region growing algorithm[J].Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(8):192-199.(in Chinese) [4] 李衡霞, 龙陈锋, 曾蒙, 等.一种基于深度卷积神经网络的油菜虫害检测方法[J].湖南农业大学学报(自然科学版), 2019, 45(5):560-564. LI H X, LONG C F, ZENG M, et al.A detectiong method for the rape pests based on deep convolutional neural network[J].Hunan Agricultural University(Natural Sciences), 2019, 45(5):560-564.(in Chinese) [5] SIMONYAN K, ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[EB/OL].[2020-12-10].https://arxiv.org/pdf/1409.1556.pdf. [6] GIRSHICK R.Fast R-CNN[C]//Proceedings of IEEE International Conference on Computer Vision.New York, USA:IEEE Press, 2015:1440-1448. [7] 李想.基于物联网的虫情监测系统[D].北京:北京林业大学, 2019. LI X.The pest monitoring system based on the Internet of Things[D].Beijing:Beijing Forestry University, 2019.(in Chinese) [8] LIU W, ANGUELOV D, ERHAN D, et al.SSD:single shot multibox detector[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2016:21-37. [9] BOCHKOVSKIY A, WANG C Y, LIAO H Y M.YOLOv4:optimal speed and accuracy of object detection[EB/OL].[2020-12-10].https://arxiv.org/abs/2004.10934. [10] SONG H, WILLI M, THIAGARAJAN J J, et al.Triplet network with attention for speaker diarization[EB/OL].[2020-12-10].https://arxiv.org/pdf/1808.01535.pdf. [11] LIU S, QI L, QIN H, et al.Path aggregation network for instance segmentation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.New York, USA:IEEE Press, 2018:8759-8768. [12] REDMON J, DIVVALA S, GIRSHICK R, et al.You only look once:unified, real-timeobject detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.New York, USA:IEEE Press, 2016:779-788. [13] 高宗, 李少波, 陈济楠.基于YOLO网络的行人检测方法[J].计算机工程, 2018, 44(5):215-219, 226. GAO Z, LI S B, CHEN J N.Pedestrian detection method based on YOLO network[J].Computer Engineering, 2018, 44(5):215-219, 226.(in Chinese) [14] REDMON J, FARHADI A.YOLOV3:an incremental improvement[EB/OL].[2020-12-10].https://arxiv.org/pdf/1804.02767.pdf. [15] WU D, LV S, JIANG M, et al.Using channel pruning-based YOLOv4 deep learning algorithm for the real-time and accurate detection of apple flowers in natural environments[J].Computers and Electronics in Agriculture, 2020, 178:105742. [16] 鞠默然, 罗海波, 王仲博, 等.改进的YOLOV3算法及其在小目标检测中的应用[J].光学学报, 2019, 39(7):253-260. JU M R, LUO H B, WANG Z B, et al.Improved YOLOV3 algorithm and its application in small target detection[J].Acta Optica Sinica, 2019, 39(7):253-260.(in Chinese) [17] MISRA D, NALAMADA T, ARASANIPALAI A U, et al.Rotate to attend:convolutional triplet attention module[C]//Proceedings of IEEE/CVF Winter Conference on Applications of Computer Vision.New York, USA:IEEE Press, 2021:3139-3148. [18] TAN M, PANG R, LE Q V.Efficientdet:scalable and efficient object detection[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.New York, USA:IEEE Press, 2020:10781-10790. [19] 卞永明, 高飞, 李梦如, 等.结合Kmeans++聚类和颜色几何特征的火焰检测方法[J].中国工程机械学报, 2020, 18(1):1-6. BIAN Y M, GAO F, LI M R, et al.Fire detection method using Kmeans++ clustering and features of mixed color and geometry[J].Chinese Journal of Coustruction Machinery, 2020, 18(1):1-6.(in Chinese) [20] YU Z, SHEN Y, SHEN C.A real-time detection approach for bridge cracks based on YOLOv4-FPM[J].Automation in Construction, 2021, 122:1-10. [21] 杨明欣, 张耀光, 刘涛.基于卷积神经网络的玉米病害小样本识别研究[J].中国生态农业学报, 2020, 28(12):1924-1931. YANG M X, ZHANG Y G, LI T.Research on small sample recognition of corn disease based on convolutional neural network[J].Chinese Journal of Eco-Agriculture, 2020, 28(12):1924-1931.(in Chinese) |