| 1 |
SU Y, ZHAO Y J, NIU C H, et al. Robust anomaly detection for multivariate time series through stochastic recurrent neural network[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York, USA: ACM Press, 2019: 2828-2837.
|
| 2 |
王俊, 赖会霞, 万玥, 等. 基于角度的图神经网络高维数据异常检测方法. 计算机工程, 2024, 50 (3): 156- 165.
doi: 10.19678/j.issn.1000-3428.0067948
|
|
WANG J , LAI H X , WAN Y , et al. Angle-based graph neural network method for anomaly detection in high dimensional data. Computer Engineering, 2024, 50 (3): 156- 165.
doi: 10.19678/j.issn.1000-3428.0067948
|
| 3 |
陈何雄, 罗宇薇, 韦云凯, 等. 基于联邦学习的SDN异常流量协同检测技术. 计算机工程, 2023, 49 (3): 168- 176.
doi: 10.19678/j.issn.1000-3428.0064310
|
|
CHEN H X , LUO Y W , WEI Y K , et al. Collaborative detection technology of SDN abnormal traffic based on federated learning. Computer Engineering, 2023, 49 (3): 168- 176.
doi: 10.19678/j.issn.1000-3428.0064310
|
| 4 |
DENG A L, HOOI B. Graph neural network-based anomaly detection in multivariate time series[C]//Proceedings of the 35th AAAI Conference on Artificial Intelligence/33rd Conference on Innovative Applications of Artificial Intelligence/11th Symposium on Educational Advances in Artificial Intelligence. Palo Alto, USA: AAAI Press, 2021: 8-15.
|
| 5 |
PARK D , HOSHI Y , KEMP C C . A multimodal anomaly detector for robot-assisted feeding using an LSTM-based variational autoencoder. IEEE Robotics and Automation Letters, 2018, 3 (3): 1544- 1551.
doi: 10.1109/LRA.2018.2801475
|
| 6 |
HUNDMAN K, CONSTANTINOU V, LAPORTE C, et al. Detecting spacecraft anomalies using LSTMs and nonparametric dynamic thresholding[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York, USA: ACM Press, 2018: 387-395.
|
| 7 |
|
| 8 |
SEHILI M E A, ZHANG Z H. Multivariate time series anomaly detection: fancy algorithms and flawed evaluation methodology[EB/OL]. [2024-03-17]. https://arxiv.org/abs/2308.13068.
|
| 9 |
ZHAO H, WANG Y J, DUAN J Y, et al. Multivariate time-series anomaly detection via graph attention network[C]//Proceedings of the IEEE International Conference on Data Mining (ICDM). Washington D.C., USA: IEEE Press, 2020: 841-850.
|
| 10 |
HO J , JAIN A , ABBEEL P . Denoising diffusion probabilistic models. Advances in Neural Information Processing Systems, 2020, 33, 6840- 6851.
|
| 11 |
CHO K, VAN MERRIENBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder — decoder for statistical machine translation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Stroudsburg, USA: ACL Press, 2014: 1724-1734.
|
| 12 |
EMADI H S , MAZINANI S M . A novel anomaly detection algorithm using DBSCAN and SVM in wireless sensor networks. Wireless Personal Communications, 2018, 98 (2): 2025- 2035.
doi: 10.1007/s11277-017-4961-1
|
| 13 |
ZARE MOAYEDI H, MASNADI-SHIRAZI M A. ARIMA model for network traffic prediction and anomaly detection[C]//Proceedings of the International Symposium on Information Technology. Washington D.C., USA: IEEE Press, 2008: 1-6.
|
| 14 |
CHEN L D , LAO K W , MA Y L , et al. Error modeling and anomaly detection of smart electricity meter using TSVD+L method. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1- 14.
|
| 15 |
LI T Y, COMER M L, DELP E J, et al. Anomaly scoring for prediction-based anomaly detection in time series[C]//Proceedings of the IEEE Aerospace Conference. Washington D.C., USA: IEEE Press, 2020: 1-7.
|
| 16 |
MUNIR M , SIDDIQUI S A , DENGEL A , et al. DeepAnT: a deep learning approach for unsupervised anomaly detection in time series. IEEE Access, 2019, 7, 1991- 2005.
doi: 10.1109/ACCESS.2018.2886457
|
| 17 |
PARK J, PARK Y, KIM C I. TCAE: temporal convolutional autoencoders for time series anomaly detection[C]//Proceedings of the 13th International Conference on Ubiquitous and Future Networks (ICUFN). Washington D.C., USA: IEEE Press, 2022: 421-426.
|
| 18 |
MALHOTRA P, RAMAKRISHNAN A, ANAND G, et al. LSTM-based encoder — decoder for multi-sensor anomaly detection[EB/OL]. [2024-03-17]. https://arxiv.org/abs/1607.00148.
|
| 19 |
XU H W, FENG Y, CHEN J, et al. Unsupervised anomaly detection via variational auto-encoder for seasonal KPIs in Web applications[C]//Proceedings of the 2018 World Wide Web Conference. New York, USA: ACM Press, 2018: 187-196.
|
| 20 |
LI Z Y , SUN Y , YANG L H , et al. Unsupervised machine anomaly detection using autoencoder and temporal convolutional network. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1- 13.
|
| 21 |
LIANG H R , SONG L , DU J R , et al. Consistent anomaly detection and localization of multivariate time series via cross-correlation graph-based encoder — decoder GAN. IEEE Transactions on Instrumentation Measurement, 2022, 71, 3139696.
|
| 22 |
ZHAN J, WANG S Q, MA X D, et al. STGAT-MAD: spatial-temporal graph attention network for multivariate time series anomaly detection[C]//Proceedings of the 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Washington D.C., USA: IEEE Press, 2022: 3568-3572.
|
| 23 |
|
| 24 |
|
| 25 |
|
| 26 |
CHANG C, PENG W C, CHEN T F. LLM4TS: two-stage fine-tuning for time-series forecasting with pre-trained LLMs[EB/OL]. [2024-03-17]. https://arxiv.org/abs/2308.08469.
|
| 27 |
|
| 28 |
BLATTMANN A, ROMBACH R, LING H, et al. Align your latents: high-resolution video synthesis with latent diffusion models[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2023: 22563-22575.
|
| 29 |
YANG R H , SRIVASTAVA P , MANDT S . Diffusion probabilistic modeling for video generation. Entropy, 2023, 25 (10): 1469.
doi: 10.3390/e25101469
|
| 30 |
YANG D C , YU J W , WANG H L , et al. Diffsound: discrete diffusion model for text-to-sound generation. ACM Transactions on Audio, Speech, and Language Processing, 2023, 31, 1720- 1733.
|
| 31 |
YU C H, ZHOU Q, LI J L, et al. Points-to-3D: bridging the gap between sparse points and shape-controllable text-to-3D generation[C]//Proceedings of the 31st ACM International Conference on Multimedia. New York, USA: ACM Press, 2023: 6841-6850.
|
| 32 |
WYATT J, LEACH A, SCHMON S M, et al. AnoDDPM: anomaly detection with denoising diffusion probabilistic models using simplex noise[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2022: 19-35.
|
| 33 |
|
| 34 |
RASUL K, SEWARD C, SCHUSTER I, et al. Autoregressive denoising diffusion models for multivariate probabilistic time series forecasting[EB/OL]. [2024-03-17]. https://arxiv.org/abs/2101.12072.
|
| 35 |
PINTILIE I, MANOLACHE A, BRAD F. Time series anomaly detection using diffusion-based models[C]//Proceedings of the IEEE International Conference on Data Mining Workshops (ICDMW). Washington D.C., USA: IEEE Press, 2023: 570-578.
|
| 36 |
LUO C, LOU J G, LIN Q W, et al. Correlating events with time series for incident diagnosis[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Washington D.C., USA: IEEE Press, 2014: 1583-1592.
|
| 37 |
|
| 38 |
BIANCHI F M , GRATTAROLA D , LIVI L , et al. Graph neural networks with convolutional ARMA filters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44 (7): 3496- 3507.
|
| 39 |
JIN W, MA Y, LIU X R, et al. Graph structure learning for robust graph neural networks[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York, USA: ACM Press, 2020: 66-74.
|
| 40 |
SINGHAL A . Modern information retrieval: a brief overview. IEEE Data Engineering Bulletin, 2001, 24 (4): 35- 43.
|
| 41 |
GOH J , ADEPU S , JUNEJO K N , et al. A dataset to support research in the design of secure water treatment systems. Berlin, Germany: Springer, 2017.
|
| 42 |
MOHAMED A , OTHMAN A , GALAL W F , et al. Integrated geophysical approach of groundwater potential in Wadi AI Ranyah, Saudi Arabia, using gravity, electrical resistivity, and remote-sensing techniques. Remote Sensing, 2023, 15 (7): 1808.
doi: 10.3390/rs15071808
|
| 43 |
TULI S, CASALE G, JENNINGS N R. TranAD: deep Transformer networks for anomaly detection in multivariate time series data[EB/OL]. [2024-03-17]. https://arxiv.org/abs/2201.07284.
|
| 44 |
|
| 45 |
SCHÖLKOPF B , PLATT J C , SHAWE-TAYLOR J , et al. Estimating the support of a high-dimensional distribution. Neural Computation, 2001, 13 (7): 1443- 1471.
doi: 10.1162/089976601750264965
|
| 46 |
VAN DER MAATEN L , HINTON G . Visualizing data using t-SNE. Journal of Machine Learning Research, 2008, 9 (11): 2579- 2605.
|