作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2025, Vol. 51 ›› Issue (2): 356-364. doi: 10.19678/j.issn.1000-3428.0069202

• 开发研究与工程应用 • 上一篇    下一篇

复杂环境下高速服务区禁停检测算法

安国成1,*(), 王晓龙1, 江波2, 幸健1   

  1. 1. 上海华讯网络系统有限公司行业数智事业部, 四川 成都 610074
    2. 中国电子科技集团公司第三十二研究所, 上海 201808
  • 收稿日期:2024-01-10 出版日期:2025-02-15 发布日期:2024-08-19
  • 通讯作者: 安国成
  • 基金资助:
    "十四五"国家重点研发计划(2023YFC3006700)

Prohibited Parking Detection Algorithm for Highway Service Area in Complex Environment

AN Guocheng1,*(), WANG Xiaolong1, JIANG Bo2, XING Jian1   

  1. 1. The Artificial Intelligence Research Institute, Shanghai Huaxun Network System Co., Ltd., Chengdu 610074, Sichuan, China
    2. The 32nd Research Institute of China Electronics Technology Group Corporation, Shanghai 201808, China
  • Received:2024-01-10 Online:2025-02-15 Published:2024-08-19
  • Contact: AN Guocheng

摘要:

高速服务区车辆禁停检测面临场景复杂的挑战, 目前基于单一车型信息的禁停检测算法受到昼夜光照变化、车辆重叠遮挡以及视角倾斜等因素的影响, 无法在连续时间段内准确判断禁停区域内的车辆是否为同一辆车, 存在较高的误检率和漏检率。为此, 提出一种复杂环境下高速服务区禁停检测算法, 首先使用YOLOv5车辆检测算法获取车型与位置信息, 并给出一种改进禁停区域匹配方法, 提升复杂环境下目标和区域匹配准确率; 其次对禁停区域内目标车辆使用ConvNeXt车身颜色识别算法获取颜色信息; 最后设计一种分阶段控制的多维信息匹配与融合策略, 有效降低因光照、遮挡、视角等变化导致的车辆身份判断不准确情况, 从而降低服务区车辆禁停检测的误报率与漏检率。实验结果表明, 所提方法在高速服务区禁停数据集上的禁停误检率由3.56%下降到0.77%, 禁停漏检率由11.3%下降到2.48%, 不仅为服务区管理禁停行为提供了车辆多属性信息和车辆违停时长信息, 而且满足服务区多场景部署的性能要求, 可较好地用于实际应用中。

关键词: ConvNeXt网络, 车身颜色识别, YOLOv5算法, 车辆检测, 禁停检测

Abstract:

Prohibited-parking detection in highway service areas is rendered complicated by complex environments. Current algorithms based on single-vehicle information are affected by factors such as diurnal lighting changes, vehicle overlap and occlusion, and viewing-angle variations, which prevent accurate judgment of whether vehicles within the prohibited parking area are the same over consecutive time periods, thus resulting in high false-positive and -negative rates. Hence, we propose a method for prohibited-parking detection in highway service areas under complex conditions, which involves the following steps: First, the YOLOv5 vehicle-detection algorithm is used to obtain the vehicle type and location information, and an improved matching method for prohibited parking areas is proposed that effectively enhances the accuracy of target and area matching in complex environments. Second, the ConvNeXt vehicle-body-color recognition algorithm is employed to obtain the color information for vehicle targets within the prohibited parking area. Finally, a multistage control strategy for multidimensional information matching and fusion is designed that effectively reduces inaccuracies in vehicle-identity judgment caused by changes in lighting, occlusions, and viewing angles, thereby reducing false reporting and missed-detection rates in prohibited-parking detection. Experimental results show that the proposed method reduces the false-positive rate from 3.56% to 0.77% and the false-negative rate from 11.3% to 2.48% on a highway service area prohibited-parking dataset. Moreover, it not only provides multi-attribute information and the parking duration of vehicles for the management of prohibited-parking behavior in service areas but also satisfies the performance requirements for multiscenario deployment in service areas, thus demonstrating its practical applicability.

Key words: ConvNeXt network, vehicle color recognition, YOLOv5 algorithm, vehicle detection, prohibited parking detection