1 |
郭克友, 王苏东, 李雪, 等. 基于Dim env-YOLO算法的昏暗场景车辆多目标检测. 计算机工程, 2023, 49 (3): 312- 320.
doi: 10.19678/j.issn.1000-3428.0063769
|
|
GUO K Y , WANG S D , LI X , et al. Multi-target detection of vehicles in dim scenes based on dim env-YOLO algorithm. Computer Engineering, 2023, 49 (3): 312- 320.
doi: 10.19678/j.issn.1000-3428.0063769
|
2 |
李松江, 耿兰兰, 王鹏. 基于改进Yolov4的车辆目标检测. 计算机工程, 2023, 49 (4): 272- 280.
doi: 10.19678/j.issn.1000-3428.0062943
|
|
LI S J , GENG L L , WANG P . Vehicle target detection based on improved Yolov4. Computer Engineering, 2023, 49 (4): 272- 280.
doi: 10.19678/j.issn.1000-3428.0062943
|
3 |
庄建军, 徐子恒, 张若愚. 基于改进的YOLOv5模型和射线法的车辆违停检测. 南京信息工程大学学报(自然科学版), 2024, 16 (3): 341- 351.
doi: 10.13878/j.cnki.jnuist.20230402001
|
|
ZHUANG J J , XU Z H , ZHANG R Y . Illegal parking detection based on improved YOLOv5 model and ray method. Journal of Nanjing University of Information Science & Technology(Natural Science Edition), 2024, 16 (3): 341- 351.
doi: 10.13878/j.cnki.jnuist.20230402001
|
4 |
赵逸如, 刘正熙, 熊运余, 等. 基于目标检测和语义分割的人行道违规停车检测. 现代计算机, 2020, (9): 82- 88.
URL
|
|
ZHAO Y R , LIU Z X , XIONG Y Y , et al. Detection of illegal sidewalk parking based on object detection and semantic segmentation. Modern Computer, 2020, (9): 82- 88.
URL
|
5 |
KE X , ZHANG Y F . Fine-grained vehicle type detection and recognition based on dense attention network. Neurocomputing, 2020, 399, 247- 257.
doi: 10.1016/j.neucom.2020.02.101
|
6 |
TARIQ A, KHAN M Z, GHANI KHAN M U. Real time vehicle detection and color recognition using tuned features of faster-RCNN[C]//Proceedings of the 1st International Conference on Artificial Intelligence and Data Analytics. Washington D. C., USA: IEEE Press, 2021: 262-267.
|
7 |
|
8 |
|
9 |
CHEN L C , PAPANDREOU G , KOKKINOS I , et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40 (4): 834- 848.
doi: 10.1109/TPAMI.2017.2699184
|
10 |
|
|
ZHAN Z H, ZHONG M E, YUAN B A, et al. Detection of roadside vehicle parking violations under random horizontal camera condition[J/OL]. Journal of Shanghai Jiao Tong University: 1-10[2023-12-10]. https://doi:10.16183/j.cnki.jsjtu.2023.578. (in Chinese)
|
11 |
|
12 |
李建威, 吕晓琪, 谷宇. 基于改进ConvNeXt的皮肤镜图像分类方法. 计算机工程, 2023, 49 (10): 239-246, 254.
|
|
LI J W , (LÜ/LV/LU/LYU) X Q , GU Y . Dermoscopy image classification method based on improved ConvNeXt. Computer Engineering, 2023, 49 (10): 239-246, 254.
|
13 |
TANG K H, HUANG J Q, ZHANG H W. Long-tailed classification by keeping the good and removing the bad momentum causal effect[C]//Proceedings of NIPS'20. Cambridge, USA: MIT Press, 2020: 267-277.
|
14 |
JEONG Y , PARK K H , PARK D . Homogeneity patch search method for voting-based efficient vehicle color classification using front-of-vehicle image. Multimedia Tools and Applications, 2019, 78 (20): 28633- 28648.
URL
|
15 |
CHEN P , BAI X , LIU W Y . Vehicle color recognition on urban road by feature context. IEEE Transactions on Intelligent Transportation Systems, 2014, 15 (5): 2340- 2346.
URL
|
16 |
HU M D, BAI L, LI Y, et al. Vehicle 24-color long tail recognition based on smooth modulation neural network with multi-layer feature representation[EB/OL]. [2023-12-10]. https://arxiv.org/abs/2107.09944.
|
17 |
LIU X C , LIU W , MEI T , et al. A deep learning-based approach to progressive vehicle re-identification for urban surveillance. Berlin, Germany: Springer, 2016.
|
18 |
|
19 |
LIU Z, LIN Y T, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2022: 9992-10002.
|
20 |
DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[EB/OL]. [2023-12-10]. https://arxiv.org/abs/1810.04805.
|
21 |
|
22 |
|
23 |
|
24 |
RADFORD A , WU J , CHILD R , et al. Language models are unsupervised multitask learners. OpenAI Blog, 2019, 1 (8): 9.
|
25 |
HOWARD A G, ZHU M L, Chen B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[EB/OL]. [2023-12-10]. https://arxiv.org/abs/1704.04861.
|
26 |
CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]//Proceedings of 2017 IEEE Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2017: 332-341.
|
27 |
NAIR V, HINTON G E. Rectified linear units improve restricted boltzmann machines[C]//Proceedings of the 27th International Conference on International Conference on Machine Learning. Washington D. C., USA: IEEE Press, 2010: 807-814.
|
28 |
|