1 |
WAQAS S , MUBARAK S . Human action recognition in drone videos using a few aerial training examples. Computer Vision and Image Understanding, 2021, 206, 103186.
doi: 10.1016/j.cviu.2021.103186
|
2 |
齐妙, 徐慧, 李森, 等. 一种基于双流网络的行为识别方法. 吉林大学学报(理学版), 2023, 61 (2): 347- 352.
URL
|
|
QI M , XU H , LI S , et al. An action recognition method based on two-stream network. Journal of Jilin University (Science Edition), 2023, 61 (2): 347- 352.
URL
|
3 |
祖鑫萍, 李丹. 基于无人机图像和改进YOLOv3-SPP算法的森林火灾烟雾识别方法. 林业工程学报, 2022, 7 (5): 142- 149.
URL
|
|
ZU X P , LI D . Research on forest fire smoke identification method based on UAV images and improved YOLOv3-SPP algorithm. Journal of Forestry Engineering, 2022, 7 (5): 142- 149.
URL
|
4 |
CAO Y R, HE Z J, WANG L J, et al. VisDrone-DET2021: the vision meets drone object detection challenge results[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops (ICCVW). Washington D.C., USA: IEEE Press, 2021: 2847-2854.
|
5 |
ROZANTSEV A , LEPETIT V , FUA P . Detecting flying objects using a single moving camera. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (5): 879- 892.
doi: 10.1109/TPAMI.2016.2564408
|
6 |
HASSIJA V , CHAMOLA V , AGRAWAL A , et al. Fast, reliable, and secure drone communication: a comprehensive survey. IEEE Communications Surveys [WT《Times New Roman》]& Tutorials, 2021, 23 (4): 2802- 2832.
doi: 10.1109/COMST.2021.3097916
|
7 |
GARCIA A J, LEE J M, KIM D S. Anti-drone system: a visual-based drone detection using neural networks[C]//Proceedings of the International Conference on Information and Communication Technology Convergence (ICTC). Washington D.C., USA: IEEE Press, 2020: 559-561.
|
8 |
REN S Q , HE K M , GIRSHICK R , et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149.
doi: 10.1109/TPAMI.2016.2577031
|
9 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2016: 770-778.
|
10 |
XUN D T W, LIM Y L, SRIGRAROM S. Drone detection using YOLOv3 with transfer learning on NVIDIA Jetson TX2[C]//Proceedings of the 2nd International Symposium on Instrumentation, Control, Artificial Intelligence, and Robotics (ICA-SYMP). Washington D.C., USA: IEEE Press, 2021: 1-6.
|
11 |
|
12 |
DELLEJI T, FEKIH H, CHTOUROU Z. Deep Learning-based approach for detection and classification of micro/mini drones[C]//Proceedings of the 4th International Conference on Advanced Systems and Emergent Technologies (IC_ASET). Washington D.C., USA: IEEE Press, 2020: 332-337.
|
13 |
YAO J H , LI J F . AYOLOv3-Tiny: an improved convolutional neural network architecture for real-time defect detection of PAD light guide plates. Computers in Industry, 2022, 136, 103588.
doi: 10.1016/j.compind.2021.103588
|
14 |
包文歧, 谢立强, 徐才华, 等. 基于YOLOv5的微小型无人机实时探测方法. 兵器装备工程学报, 2022, 43 (5): 232- 237.
URL
|
|
BAO W Q , XIE L Q , XU C H , et al. Real-time detection method of micro UAV based on YOLOv5. Journal of Ordnance Equipment Engineering, 2022, 43 (5): 232- 237.
URL
|
15 |
彭晏飞, 赵涛, 陈炎康, 等. 基于上下文信息与特征细化的无人机小目标检测算法. 计算机工程与应用, 2024, 60 (5): 183- 190.
doi: 10.3778/j.issn.1002-8331.2305-0401
|
|
PENG Y F , ZHAO T , CHENG Y K , et al. UAV small object detection algorithm based on context information and feature refinement. Computer Engineering and Applications, 2024, 60 (5): 183- 190.
doi: 10.3778/j.issn.1002-8331.2305-0401
|
16 |
LÜ Y W , AI Z Q , CHEN M F , et al. High-resolution drone detection based on background difference and SAG-YOLOv5s. Sensors, 2022, 22 (15): 5825.
doi: 10.3390/s22155825
|
17 |
HAN K, WANG Y H, TIAN Q, et al. GhostNet: more features from cheap operations[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2020: 1577-1586.
|
18 |
LI H L, LI J, WEI H B, et al. Slim-neck by GSConv: a better design paradigm of detector architectures for autonomous vehicles[EB/OL]. [2023-09-04]. http://arxiv.org/abs/2206.02424.
|
19 |
LIANG Y , LI M Z , JIANG C J , et al. CEModule: a computation efficient module for lightweight convolutional neural networks. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34 (9): 6069- 6080.
doi: 10.1109/TNNLS.2021.3133127
|
20 |
王朕, 李豪, 严冬梅, 等. 基于改进YOLOv5的路面病害检测模型. 计算机工程, 2023, 49 (2): 15- 23.
doi: 10.19678/j.issn.1000-3428.0064924
|
|
WANG Z , LI H , YAN D M , et al. Pavement disease detection model based on improved YOLOv5. Computer Engineering, 2023, 49 (2): 15- 23.
doi: 10.19678/j.issn.1000-3428.0064924
|
21 |
宋华伟, 屈晓娟, 杨欣, 等. 基于改进YOLOv5的火焰烟雾检测. 计算机工程, 2023, 49 (6): 250- 256.
doi: 10.19678/j.issn.1000-3428.0064509
|
|
SONG H W , QU X J , YANG X , et al. Flame and smoke detection based on improved YOLOv5. Computer Engineering, 2023, 49 (6): 250- 256.
doi: 10.19678/j.issn.1000-3428.0064509
|
22 |
李嘉新, 侯进, 盛博莹, 等. 基于改进YOLOv5的遥感小目标检测网络. 计算机工程, 2023, 49 (9): 256- 264.
doi: 10.19678/j.issn.1000-3428.0065935
|
|
LI J X , HOU J , SHENG B Y , et al. Remote sensing small object detection network based on improved YOLOv5. Computer Engineering, 2023, 49 (9): 256- 264.
doi: 10.19678/j.issn.1000-3428.0065935
|
23 |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision (ECCV). Berlin, Germany: Springer, 2018: 3-19.
|
24 |
ZHENG Y , CHEN Z , LV D L , et al. Air-to-air visual detection of micro-UAVs: an experimental evaluation of deep learning. IEEE Robotics and Automation Letters, 2021, 6 (2): 1020- 1027.
doi: 10.1109/LRA.2021.3056059
|
25 |
|
26 |
LIU Y C, SHAO Z R, HOFFMANN N. Global attention mechanism: retain information to enhance channel-spatial interactions[EB/OL]. [2023-09-04]. http://arxiv.org/abs/2112.05561.
|
27 |
YANG L X, ZHANG R R, LI L D, et al. SimAM: a simple, parameter-free attention module for convolutional neural networks[C]//Proceedings of International Conference on Machine Learning. New York, USA: PMLR Press, 2021: 11863-11874.
|