作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2024, Vol. 50 ›› Issue (12): 265-275. doi: 10.19678/j.issn.1000-3428.0068620

• 图形图像处理 • 上一篇    下一篇

高动态场景下无人机空对空目标检测

王林1,2, 赵莉2,*(), 王无为3   

  1. 1. 厦门工学院数据科学与计算机学院, 福建 厦门 361021
    2. 西安理工大学自动化与信息工程学院, 陕西 西安 710048
    3. 西安邮电大学自动化学院, 陕西 西安 710061
  • 收稿日期:2023-10-19 出版日期:2024-12-15 发布日期:2024-04-08
  • 通讯作者: 赵莉
  • 基金资助:
    国家自然科学基金(62202376); 陕西省科协青年人才托举计划(20220129); 陕西省教育厅专项科研计划(22JK0565); 厦门工学院科学与技术研究院启动项目(KYYKT202301)

Air-to-Air Target Detection of Unmanned Aerial Vehicles Under High Dynamic Scenarios

WANG Lin1,2, ZHAO Li2,*(), WANG Wuwei3   

  1. 1. School of Data Science and Computer Science, Xiamen Institute of Technology, Xiamen 361021, Fujian, China
    2. School of Automation and Information Engineering, Xi'an University of Technology, Xi'an 710048, Shaanxi, China
    3. School of Automation, Xi'an University of Posts and Telecommunications, Xi'an 710061, Shaanxi, China
  • Received:2023-10-19 Online:2024-12-15 Published:2024-04-08
  • Contact: ZHAO Li

摘要:

针对高动态场景下无人机(UVA)空对空目标检测任务中机载设备计算资源有限和UVA小目标检测困难的问题, 提出一种基于轻量级注意力机制的无人机空对空目标检测算法SGC-YOLOv5。首先, 设计S-Ghost模块和SD-Ghost结构构建特征提取网络SD-GhostNet, 降低模型参数量和计算复杂度; 其次, 引入更高效的GSConv和VOVGSCSP结构细化特征融合网络, 将SD-GhostNet和细化的特征融合网络相结合使模型达到最佳的轻量化效果; 最后, 在特征融合网络中加入轻量级卷积块注意力模块(CBAM)来突出图像中感兴趣的UVA特征, 抑制背景冗余信息, 提高检测精度。在数据集Det-Fly上的实验结果表明, SGC-YOLOv5算法的精确率为74.9%、参数量为4 313 695、检测速度为169.42帧/s、每秒浮点运算次数(FLOPs)为9.0×109, 与基准YOLOv5s算法相比, 检测精确率提升2.5%、参数量减少48.5%、检测速度提升26.17帧/s、FLOPs降低57.5%, 在实现模型轻量化的同时取得了较好的检测精确率。

关键词: 视觉目标检测, 无人机空对空目标检测, YOLOv5算法, 轻量化, 注意力机制

Abstract:

To address the issues of limited onboard computing resources and the difficulty of recognizing small targets in Unmanned Aerial Vehicle (UAV) air-to-air target detection tasks in high dynamic scenarios, a UAV air-to-air target detection algorithm based on a lightweight attention mechanism, SGC-YOLOv5, is proposed. First, the S-Ghost module and SD-Ghost structure are used to build an SD-GhostNet, a feature extraction network, which reduces the computational complexity and number of parameters of the model. Second, more efficient GSConv and VOVGSCSP structures are introduced to refine the feature fusion network, and SD-GhostNet is combined with the refined feature fusion network to achieve the best lightweight effect of the mode. Finally, a lightweight Convolutional Block Attention Module (CBAM) is added to the feature fusion network to highlight the UAV features of interest in the image, suppress redundant background information, and improve detection accuracy. Experimental results on the Det-Fly dataset indicate that the SGC-YOLOv5 algorithm achieves an accuracy, parameter count, detection speed, Floating Point Operations Per Second (FLOPs) of 74.9%, 4 313 695, 169.42 frames per second, and 9.0×109, respectively. Compared with the benchmark YOLOv5s algorithm, the detection accuracy and detection speed are improved by 2.5% and 26.17 frames per second, respectively, whereas the parameter count and FLOPs are reduced by 48.5% and 57.5%, respectively. This model achieves good detection accuracy while achieving a lightweight model.

Key words: visual object detection, Unmanned Aerial Vehicle(UVA) air-to-air target detection, YOLOv5 algorithm, lightweight, attention mechanism