1 |
WOJKE N, BEWLEY A, PAULUS D. Simple online and realtime tracking with a deep association metric[C]//Proceedings of IEEE International Conference on Image Processing. Washington D. C., USA: IEEE Press, 2017: 3645-3649.
|
2 |
ZHANG Y F, SUN P Z, JIANG Y, et al. ByteTrack: multi-object tracking by associating every detection box[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2022: 1-21.
|
3 |
CHEN L H, SU C W, HSIAO H A. Player trajectory reconstruction for tactical analysis. Multimedia Tools and Applications, 2018, 77(23): 30475- 30486.
doi: 10.1007/s11042-018-6164-5
|
4 |
SEMPAU J, WILDERMAN S J, BIELAJEW A F. DPM, a fast, accurate Monte Carlo code optimized for photon and electron radiotherapy treatment planning dose calculations. Physics in Medicine & Biology, 2000, 45(8): 2263- 2291.
|
5 |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. New York, USA: ACM Press, 2014: 580-587.
|
6 |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE Press, 2016: 779-788.
|
7 |
REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE Press, 2017: 7263-7271.
|
8 |
ZHAO L Q, LI S Y. Object detection algorithm based on improved YOLOv3. Electronics, 2020, 9(3): 537.
doi: 10.3390/electronics9030537
|
9 |
LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE Press, 2017: 2117-2125.
|
10 |
|
11 |
LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 8759-8768.
|
12 |
吴珊, 周凤. 基于改进SSD算法的小目标检测. 计算机工程, 2023, 49(7): 179-188, 195.
URL
|
|
WU S, ZHOU F. Small target detection based on improved SSD algorithm. Computer Engineering, 2023, 49(7): 179-188, 195.
URL
|
13 |
宋华伟, 屈晓娟, 杨欣, 等. 基于改进YOLOv5的火焰烟雾检测. 计算机工程, 2023, 49(6): 250- 256.
URL
|
|
SONG H W, QU X J, YANG X, et al. Flame and smoke detection based on improved YOLOv5. Computer Engineering, 2023, 49(6): 250- 256.
URL
|
14 |
KATHAROPOULOS A, VYAS A, PAPPAS N, et al. Transformers are RNNs: fast autoregressive transformers with linear attention[EB/OL]. [2023-06-20]. http://arxiv.org/abs/2006.16236v3.
|
15 |
COLIN R, NOAM S, ADAM R, et al. Exploring the limits of transfer learning with a unified text-to-text transformer. The Journal of Machine Learning Research, 2020, 21(1): 5485- 5551.
|
16 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of NIPS'17. Cambridge, USA: MIT Press, 2017: 30-41.
|
17 |
|
18 |
ZHANG Y F, REN W Q, ZHANG Z, et al. Focal and efficient IoU loss for accurate bounding box regression. Neurocomputing, 2022, 506, 146- 157.
doi: 10.1016/j.neucom.2022.07.042
|
19 |
SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE Press, 2018: 4510-4520.
|
20 |
CAI H, GAN C, HAN S. EfficientViT: enhanced linear attention for high-resolution low-computation visual recognition[EB/OL]. [2023-06-20]. http://arxiv.org/abs/2205.14756, 2022.
|
21 |
MSONDA P, UYMAZ S A, KARAAGAC S S. Spatial pyramid pooling in deep convolutional networks for automatic tuberculosis diagnosis. Traitement Du Signal, 2020, 37(6): 1075- 1084.
doi: 10.18280/ts.370620
|
22 |
ZHENG Z, WANG P, REN D, et al. Enhancing geometric factors in model learning and inference for object detection and instance segmentation. IEEE Transactions on Cybernetics, 2022, 52(8): 8574- 8586.
doi: 10.1109/TCYB.2021.3095305
|
23 |
CUI Y T, ZENG C K, ZHAO X Y, et al. SportsMOT: a large multi-object tracking dataset in multiple sports scenes[EB/OL]. [2023-06-20]. http://arxiv.org/abs/2304.05170v2.
|
24 |
|
25 |
ZHANG X Y, ZHOU X Y, LIN M X, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE Press, 2018: 6848-6856.
|
26 |
LI Y, YUAN G, WEN Y, et al. EfficientFormer: vision transformers at mobilenet speed. Information Processing Systems, 2022, 35, 12934- 12949.
|
27 |
YU W H, LUO M, ZHOU P, et al. MetaFormer is actually what you need for vision[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans, USA: IEEE Press, 2022: 10819-10829.
|