1 |
FU D H, DAI L, DAI J H. Automatic detection and localization of surface defects for whole piece of ultrahigh-definition leather images[C]//Proceedings of the 4th International Conference on Computer and Communication Systems. Washington D. C., USA: IEEE Press, 2019: 229-232.
|
2 |
MOHAMMED K M C, KUMAR S S, PRASAD G. Optimized fuzzy C-means clustering methods for defect detection on leather surface. Journal of Scientific & Industrial Research, 2020, 79 (9): 883- 836.
|
3 |
KUMAR M P, ASHOK D. A multi-level colour thresholding based segmentation approach for improved identification of the defective region in leather surfaces. Engineering Journal, 2020, 24 (2): 101- 108.
doi: 10.4186/ej.2020.24.2.101
|
4 |
KAYNAR O, IŞIK Y E, GÖRMEZ Y, et al. Fabric defect detection with LBP-GLMC[C]//Proceedings of International Artificial Intelligence and Data Processing Symposium. Washington D. C., USA: IEEE Press, 2017: 1-5.
|
5 |
ZHANG N, XIANG J, WANG L, et al. Image retrieval of wool fabric. Part Ⅰ: based on low-level texture features. Textile Research Journal, 2019, 89 (19/20): 4195- 4207.
|
6 |
LI N, ZHAO J Y, JIANG P. Fabric defects detection via visual attention mechanism[C]//Proceedings of Chinese Automation Congress. Washington D. C., USA: IEEE Press, 2018: 2956-2960.
|
7 |
SADAGHIYANFAM S. Using gray-level-co-occurrence matrix and wavelet transform for textural fabric defect detection: a comparison study[C]//Proceedings of Electric Electronics, Computer Science, Biomedical Engineerings' Meeting. Washington D. C., USA: IEEE Press, 2018: 1-5.
|
8 |
MOHAMMED K M C, SRINIVAS KUMAR S, PRASAD G. Defective texture classification using optimized neural network structure. Pattern Recognition Letters, 2020, 135, 228- 236.
doi: 10.1016/j.patrec.2020.04.017
|
9 |
PEREIRA R F, MEDEIROS C M S, FILHO P P R. Goat leather quality classification using computer vision and machine learning[C]//Proceedings of International Joint Conference on Neural Networks. Washington D. C., USA: IEEE Press, 2018: 1-8.
|
10 |
JAWAHAR M, CHANDRA BABU N K, VANI K, et al. Vision based inspection system for leather surface defect detection using fast convergence particle swarm optimization ensemble classifier approach. Multimedia Tools and Applications, 2021, 80 (3): 4203- 4235.
doi: 10.1007/s11042-020-09727-3
|
11 |
AI J Q, MAO Y X, LUO Q W, et al. SAR target classification using the multikernel-size feature fusion-based convolutional neural network. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60, 1- 10.
|
12 |
LIONG S T, ZHENG D N, HUANG Y C, et al. Leather defect classification and segmentation using deep learning architecture. International Journal of Computer Integrated Manufacturing, 2020, 33 (10/11): 1105- 1117.
|
13 |
LIU J, ZHANG B G, LI L. Defect detection of fabrics with generative adversarial network based flaws modeling[C]//Proceedings of Chinese Automation Congress. Washington D. C., USA: IEEE Press, 2021: 3334-3338.
|
14 |
CHEN S Y, CHENG Y C, YANG W L, et al. Surface defect detection of wet-blue leather using hyperspectral imaging. IEEE Access, 2021, 9, 127685- 127702.
doi: 10.1109/ACCESS.2021.3112133
|
15 |
赵亚男, 吴黎明, 陈琦. 基于多尺度融合SSD的小目标检测算法. 计算机工程, 2020, 46 (1): 247- 254.
URL
|
|
ZHAO Y N, WU L M, CHEN Q. Small object detection algorithm based on multi-scale fusion SSD. Computer Engineering, 2020, 46 (1): 247- 254.
URL
|
16 |
程珍. 基于深度卷积神经网络的织物瑕疵检测算法研究[D]. 上海: 东华大学, 2021.
|
|
CHENG Z. Research on fabric defect detection algorithm based on deep convolutional neural network[D]. Shanghai: Donghua University, 2021. (in Chinese)
|
17 |
杨毅, 桑庆兵. 多尺度特征自适应融合的轻量化织物瑕疵检测. 计算机工程, 2022, 48 (12): 288- 295.
URL
|
|
YANG Y, SANG Q B. Lightweight-fabric defect detection based on adaptive fusion of multiscale features. Computer Engineering, 2022, 48 (12): 288- 295.
URL
|
18 |
彭成, 张乔虹, 唐朝晖, 等. 基于YOLOv5增强模型的口罩佩戴检测方法研究. 计算机工程, 2022, 48 (4): 39- 49.
URL
|
|
PENG C, ZHANG Q H, TANG Z H, et al. Research on mask wearing detection method based on YOLOv5 enhancement model. Computer Engineering, 2022, 48 (4): 39- 49.
URL
|
19 |
HAN K, WANG Y H, TIAN Q, et al. GhostNet: more features from cheap operations[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 1577-1586.
|
20 |
|
21 |
CHEN D, MIAO D Q. Control distance IoU and control distance IoU loss function for better bounding box regression[EB/OL]. [2022-03-25]. https://arxiv.org/abs/2103.11696.
|
22 |
AI J Q, WANG F F, MAO Y X, et al. A fine PolSAR terrain classification algorithm using the texture feature fusion-based improved convolutional autoencoder. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1- 14.
|
23 |
徐先峰, 赵万福, 邹浩泉, 等. 基于MobileNet-SSD的安全帽佩戴检测算法. 计算机工程, 2021, 47 (10): 298-305, 313
URL
|
|
XU X F, ZHAO W F, ZOU H Q, et al. Detection algorithm of safety helmet wear based on MobileNet-SSD. Computer Engineering, 2021, 47 (10): 298-305, 313
URL
|
24 |
|
25 |
LI Y H, YAO T, PAN Y W, et al. Contextual transformer networks for visual recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45 (2): 1489- 1500.
|
26 |
WANG Q L, WU B G, ZHU P F, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 1-10.
|
27 |
|
28 |
HE J B, ERFANI S, MA X J, et al. Alpha-IoU: a family of power intersection over union losses for bounding box regression[EB/OL]. [2022-03-25]. https://arxiv.org/abs/2110.13675.
|
29 |
CHEN Q, WANG Y M, YANG T, et al. You only look one-level feature[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 13034-13043.
|
30 |
ZHANG H Y, WANG Y, DAYOUB F, et al. VarifocalNet: an IoU-aware dense object detector[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA. IEEE Press, 2021: 8510-8519.
|
31 |
|