1 |
RONNEBERGER O , FISCHER P , BROX T . U-Net: convolutional networks for biomedical image segmentation. Berlin, Germany: Springer, 2015.
|
2 |
ALOM M Z , YAKOPCIC C , HASAN M , et al. Recurrent residual U-Net for medical image segmentation. Journal of Medical Imaging, 2019, 6 (1): 014006.
URL
|
3 |
XU Q , MA Z C , HE N , et al. DCSAU-Net: a deeper and more compact split-attention U-Net for medical image segmentation. Computers in Biology and Medicine, 2023, 154, 106626.
doi: 10.1016/j.compbiomed.2023.106626
|
4 |
ISENSEE F , JAEGER P F , KOHL S A A , et al. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nature Methods, 2021, 18, 203- 211.
doi: 10.1038/s41592-020-01008-z
|
5 |
LIN J W , LIAO X , YU L , et al. Res-UNet based optic disk segmentation in retinal image. Journal of Computers, 2020, 31 (3): 183- 194.
URL
|
6 |
JHA D, RIEGLER M A, JOHANSEN D, et al. DoubleU-net: a deep convolutional neural network for medical image segmentation[C]//Proceedings of the 33rd IEEE International Symposium on Computer-Based Medical Systems. Washington D. C., USA: IEEE Press, 2020: 558-564.
|
7 |
LI Y X , WANG S , WANG J , et al. GT U-Net: a U-Net like group transformer network for tooth root segmentation. Berlin, Germany: Springer, 2021.
|
8 |
CAO H , WANG Y Y , CHEN J , et al. Swin-UNet: UNet-like pure transformer for Medical image segmentation. Berlin, Germany: Springer, 2023.
|
9 |
WANG H N , CAO P , WANG J Q , et al. UCTransNet: rethinking the skip connections in U-Net from a channel-wise perspective with transformer. Artificial Intelligence, 2022, 36 (3): 2441- 2449.
|
10 |
IBTEHAZ N , RAHMAN M S . MultiResUNet: rethinking the U-Net architecture for multimodal biomedical image segmentation. Neural Networks, 2020, 121, 74- 87.
doi: 10.1016/j.neunet.2019.08.025
|
11 |
ZHOU Z W , SIDDIQUEE M M R , TAJBAKHSH N , et al. UNet++: redesigning skip connections to exploit multiscale features in image segmentation. IEEE Transactions on Medical Imaging, 2020, 39 (6): 1856- 1867.
doi: 10.1109/TMI.2019.2959609
|
12 |
HUANG H M, LIN L F, TONG R F, et al. UNet 3+: a full-scale connected UNet for medical image segmentation[C]//Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing. Washington D. C., USA: IEEE Press, 2020: 1055-1059.
|
13 |
YANG Y C, SOATTO S. FDA: Fourier domain adaptation for semantic segmentation[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA: IEEE Press, 2020: 4084-4094.
|
14 |
COOLEY J W , TUKEY J W . An algorithm for the machine calculation of complex Fourier series. Mathematics of Computation, 1965, 19 (90): 297- 301.
doi: 10.1090/S0025-5718-1965-0178586-1
|
15 |
LIN S, LIU N, NAZEMI M, et al. FFT-based deep learning deployment in embedded systems[C]// Proceedings of Design, Automation Test in Europe Conference Exhibition. Dresden, Germany: [s. n.], 2018: 1045-1050.
|
16 |
CHITSAZ K, HAJABDOLLAHI M, KARIMI N, et al. Acceleration of convolutional neural network using FFT-based split convolutions[EB/OL]. [2023-11-10]. https://arxiv.org/pdf/2003.12621.
|
17 |
ZHANG J, LIN Y, SONG Z, et al. Learning long term dependencies via Fourier recurrent units[C]// Proceedings of International Conference on Machine Learning. Stockholm, Sweden: [s. n.], 2018: 5810-5818.
|
18 |
LEE-THORP J, AINSLIE J, ECKSTEIN I, et al. FNet: mixing tokens with Fourier transforms[C]//Proceedings of Conference of the North American Chapter of the Association for Computational Linguistics. Stroudsburg, USA: Association for Computational Linguistics, 2022: 4296-4313.
|
19 |
RAO Y, ZHAO W, ZHU Z, et al. Global filter networks for image classification[C]//Proceedings of Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 2021: 980-993.
|
20 |
RIAZ H U M, BENBARKA N, ZELL A. FourierNet: compact mask representation for instance segmentation using differentiable shape decoders[C]//Proceedings of the 25th International Conference on Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 7833-7840.
|
21 |
XIAO X, LIAN S, LUO Z M, et al. Weighted res-UNet for high-quality retina vessel segmentation[C]//Proceedings of the 9th International Conference on Information Technology in Medicine and Education. Hangzhou, China: [s. n.], 2018: 327-331.
|
22 |
GUAN S , KHAN A A , SIKDAR S , et al. Fully dense UNet for 2-D sparse photoacoustic tomography artifact removal. IEEE Journal of Biomedical and Health Informatics, 2020, 24 (2): 568- 576.
doi: 10.1109/JBHI.2019.2912935
|
23 |
褚张晴晴, 钟志强, 颜子夜, 等. 基于特征融合与注意力机制的脑肿瘤分割算法. 计算机工程, 2023, 49 (10): 154- 161.
doi: 10.19678/j.issn.1000-3428.0066311
|
|
CHU Z , ZHONG Z Q , YAN Z Y , et al. Brain tumor segmentation algorithm based on feature fusion and attention mechanism. Computer Engineering, 2023, 49 (10): 154- 161.
doi: 10.19678/j.issn.1000-3428.0066311
|
24 |
WOO S , PARK J , LEE J Y , et al. CBAM: convolutional block attention module. Berlin, Germany: Springer, 2018.
|
25 |
|
26 |
CHEN J N, LU Y Y, YU Q H, et al. TransUNet: transformers make strong encoders for medical image segmentation[EB/OL].[2023-11-10]. https://arxiv.org/pdf/2102.04306.
|
27 |
LI Z H , LI Y X , LI Q D , et al. LViT: language meets vision transformer in medical image segmentation. IEEE Transactions on Medical Imaging, 2024, 43 (1): 96- 107.
doi: 10.1109/TMI.2023.3291719
|
28 |
XU G P, ZHANG X, FANG Y, et al. LeVit-UNet: make faster encoders with transformer for biomedical image segmentation[EB/OL].[2023-11-10]. https://arxiv.org/pdf/2107.08623.
|
29 |
CAICEDO J C , GOODMAN A , KARHOHS K W , et al. Nucleus segmentation across imaging experiments: the 2018 Data Science Bowl. Nature Methods, 2019, 16, 1247- 1253.
doi: 10.1038/s41592-019-0612-7
|
30 |
KUMAR N , VERMA R , ANAND D , et al. A multi-organ nucleus segmentation challenge. IEEE Transactions on Medical Imaging, 2020, 39 (5): 1380- 1391.
doi: 10.1109/TMI.2019.2947628
|
31 |
MAHBOD A , SCHAEFER G , BANCHER B , et al. CryoNuSeg: a dataset for nuclei instance segmentation of cryosectioned H & E-stained histological images. Computers in Biology and Medicine, 2021, 132, 104349.
doi: 10.1016/j.compbiomed.2021.104349
|