作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2025, Vol. 51 ›› Issue (2): 387-396. doi: 10.19678/j.issn.1000-3428.0069116

• 开发研究与工程应用 • 上一篇    下一篇

基于多尺度注意力和数据增强的细胞核分割

张兴鹏*(), 何东, 杨模, 叶杭滨   

  1. 西南石油大学计算机与软件学院, 四川 成都 610500
  • 收稿日期:2023-12-27 出版日期:2025-02-15 发布日期:2024-05-07
  • 通讯作者: 张兴鹏
  • 基金资助:
    西南石油大学自然科学"启航计划"项目(2022QHZ023); 西南石油大学自然科学"启航计划"项目(2022QHZ013); 四川省科技创新人才基金(2022JDRC0009); 四川省自然科学基金(2022NSFSC0283); 四川省科技厅重点研发项目(2023YFG0129)

Nucleus Segmentation Based on Multiscale Attention and Data Augmentation

ZHANG Xingpeng*(), HE Dong, YANG Mo, YE Hangbin   

  1. School of Computer Science and Software Engineering, Southwest Petroleum University, Chengdu 610500, Sichuan, China
  • Received:2023-12-27 Online:2025-02-15 Published:2024-05-07
  • Contact: ZHANG Xingpeng

摘要:

U-Net因结构简单且高效被广泛应用于医学分割领域。然而, U-Net的跳跃连接不能很好地弥补编码器和解码器之间的语义差距。而医学分割数据的标注要求严格, 使得数据集数量和规模都较小。针对上述问题, 设计多尺度注意力融合(MSAF)模块, 旨在利用注意力机制可调整网络学习方向的特点和多尺度特征融合来有效缓解语义偏差。MSAF模块在前2个阶段使用通道注意力来捕获全局特征; 在后2个阶段使用空间注意力来捕获局部特征; 最后将多个阶段提取的特征进行融合以增强特征信息。此外, 提出基于傅里叶变换的数据增强(FTDA)方法解决医学分割数据集稀少的问题。FTDA通过扰动输入图像在频域中的幅度信息实现其相位信息的数据增强。在MoNuSeg、CryoNuSeg和2018 Data Science Bowl数据集上的实验结果表明, 提出方法的mIoU和Dice指标比其他先进方法表现出更好的性能。此外, 提出的FTDA方法对小规模数据集也具有较好的增益效果。

关键词: 注意力机制, U-Net模型, 傅里叶变换, 细胞核分割, 数据增强

Abstract:

The U-Net has been widely used in medical segmentation because of its simplicity and efficiency. However, the skip connections in the U-Net do not adequately bridge the semantic gap between the encoder and decoder. In addition, the strict labeling requirements for medical segmentation data reduce the number and scale of available datasets. To address the aforementioned issues, a Multi-Scale Attention Fusion(MSAF) module is designed to effectively alleviate semantic bias by utilizing the ability of the attention mechanism to adjust the learning direction of the network and incorporate multi-scale feature fusion. In the first two stages of the U-Net, channel attention is employed in MSAF to capture global features. In the next two stages, spatial attention is used to capture local features. Finally, the features extracted from the multiple stages are fused to enhance feature information. Moreover, Fourier Transform Data Augmentation(FTDA), a data augmentation method based on Fourier transform, is introduced to overcome the scarcity of medical segmentation data. FTDA enhances phase data by disturbing the amplitude data of the input image in the frequency domain. Experimental results on the MoNuSeg, CryoNuSeg, and 2018 Data Science Bowl datasets show that the mean Intersection over Union (mIoU) and Dice metrics of the proposed method are better than those of other advanced methods. Furthermore, the proposed FTDA method displays remarkable performance gains, even on small-scale datasets.

Key words: attention mechanism, U-Net model, Fourier transform, nucleus segmentation, data augmentation