1 |
吴铁洲, 邹智, 姜奔, 等. 基于TLBGA-GRU神经网络的短期负荷预测. 计算机工程, 2022, 48 (11): 69- 76.
doi: 10.19678/j.issn.1000-3428.0063153
|
|
WU T Z , ZOU Z , JIANG B , et al. Short-term load forecasting based on TLBGA-GRU neural network. Computer Engineering, 2022, 48 (11): 69- 76.
doi: 10.19678/j.issn.1000-3428.0063153
|
2 |
HAN J Y , YAN L , LI Z Y . A task-based day-ahead load forecasting model for stochastic economic dispatch. IEEE Transactions on Power Systems, 2021, 36 (6): 5294- 5304.
doi: 10.1109/TPWRS.2021.3072904
|
3 |
AKHTAR S , SHAHZAD S , ZAHEER A , et al. Short-term load forecasting models: a review of challenges, progress, and the road ahead. Energies, 2023, 16 (10): 4060.
doi: 10.3390/en16104060
|
4 |
ACQUAH M A , JIN Y W , OH B C , et al. Spatiotemporal sequence-to-sequence clustering for electric load forecasting. IEEE Access, 2023, 11, 5850- 5863.
doi: 10.1109/ACCESS.2023.3235724
|
5 |
YAN H F , YU X Y , LI D W , et al. Research on commercial sector electricity load model based on exponential smoothing method. Berlin, Germany: Springer, 2022.
|
6 |
LIANG Z, ZHENG C Y, ZHAO Z G, et al. Short-term load forecasting based on Kalman filter and nonlinear autoregressive neural network[C]//Proceedings of the 33rd Chinese Control and Decision Conference. Kunming, China: [s. n. ], 2021: 3747-3751.
|
7 |
BIAN H H , WANG Q , XU G Z , et al. Research on short-term load forecasting based on accumulated temperature effect and improved temporal convolutional network. Energy Reports, 2022, 8, 1482- 1491.
URL
|
8 |
曹正志, 叶春明. 基于并联CNN-SE-Bi-LSTM的轴承剩余使用寿命预测. 计算机应用研究, 2021, 38 (7): 2103- 2107.
doi: 10.19734/j.issn.1001-3695.2020.08.0224
|
|
CAO Z Z , YE C M . Prediction of bearing remaining useful life based on parallel CNN-SE-Bi-LSTM. Application Research of Computers, 2021, 38 (7): 2103- 2107.
doi: 10.19734/j.issn.1001-3695.2020.08.0224
|
9 |
CHEN Z X , ZHANG D L , JIANG H R , et al. Load forecasting based on LSTM neural network and applicable to loads of "Replacement of coal with electricity". Journal of Electrical Engineering & Technology, 2021, 16 (5): 2333- 2342.
URL
|
10 |
HAN M C , ZHONG J W , SANG P , et al. A combined model incorporating improved SSA and LSTM algorithms for short-term load forecasting. Electronics, 2022, 11 (12): 1835.
doi: 10.3390/electronics11121835
|
11 |
LIN J , MA J , ZHU J G , et al. Short-term load forecasting based on LSTM networks considering attention mechanism. International Journal of Electrical Power and Energy Systems, 2022, 137, 107818.
doi: 10.1016/j.ijepes.2021.107818
|
12 |
REN C, JIA L, WANG Z L. A CNN-LSTM hybrid model based short-term power load forecasting[C]//Proceedings of Power System and Green Energy Conference. [S. 1. ]: IEEE Press, 2021: 182-186.
|
13 |
YANG Z D, LI X F, KONG X Y, et al. A method of short-term load prediction of renewable energy power system based on CNNLSTM[C]//Proceedings of the 25th International Conference on Electrical Machines and Systems. Washington D. C., USA: IEEE Press, 2022: 1-5.
|
14 |
SAEED F , PAUL A , SEO H . A hybrid channel-communication-enabled CNN-LSTM model for electricity load forecasting. Energies, 2022, 15 (6): 2263.
doi: 10.3390/en15062263
|
15 |
SHEN X D , ZHAO H X , XIANG Y , et al. Short-term electric vehicles charging load forecasting based on deep learning in low-quality data environments. Electric Power Systems Research, 2022, 212, 108247.
doi: 10.1016/j.epsr.2022.108247
|
16 |
ZHANG W H , WANG T . Short-term power load forecasting model design based on EMD-PSO-GRU. Scientific Programming, 2022, 22, 4755519.
URL
|
17 |
ZHUANG Z Y , ZHENG X D , CHEN Z X , et al. A reliable short-term power load forecasting method based on VMD-IWOA-LSTM algorithm. IEEJ Transactions on Electrical and Electronic Engineering, 2022, 17 (8): 1121- 1132.
URL
|
18 |
袁东辉, 朱愉洁, 齐咏生, 等. 一种增强型的滚动轴承故障诊断. 计算机仿真, 2022, 39 (10): 526- 532.
URL
|
|
YUAN D H , ZHU Y J , QI Y S , et al. An enhanced fault diagnosis of rolling bearing. Computer Simulation, 2022, 39 (10): 526- 532.
URL
|
19 |
YANG J J , YAN K , WANG Z , et al. A novel denoising method for partial discharge signal based on improved variational mode decomposition. Energies, 2022, 15 (21): 8167.
URL
|
20 |
YAN S Q , LIU W D , LI X Q , et al. Comparative study and improvement analysis of sparrow search algorithm. Wireless Communications and Mobile Computing, 2022, 22, 4882521.
URL
|
21 |
YUE Y G , CAO L , LU D W , et al. Review and empirical analysis of sparrow search algorithm. Artificial Intelligence Review, 2023, 56 (10): 10867- 10919.
URL
|
22 |
XUE J K , SHEN B . A novel swarm intelligence optimization approach: sparrow search algorithm. Systems Science & Control Engineering, 2020, 8 (1): 22- 34.
|
23 |
LI J X , LIU Z W , QIU M , et al. Fault diagnosis model of rolling bearing based on parameter adaptive VMD algorithm and sparrow search algorithm-Based PNN. Systems Science & Control Engineering, 2020, 8 (1): 22- 34.
|
24 |
ZHANG Z M , LIU C L , WANG R , et al. Mechanical fault diagnosis of a disconnector operating mechanism based on vibration and the motor current. Energies, 2022, 15 (14): 5194.
URL
|
25 |
韩富佳, 王晓辉, 乔骥, 等. 基于人工智能技术的新型电力系统负荷预测研究综述. 中国电机工程学报, 2023, 43 (22): 8569- 8592.
doi: 10.13334/j.0258-8013.pcsee.221560
|
|
HAN F J , WANG X H , QIAO J , et al. Review on artificial intelligence based load forecasting research for the new-type power system. Proceedings of the CSEE, 2023, 43 (22): 8569- 8592.
doi: 10.13334/j.0258-8013.pcsee.221560
|