[1] 许鑫冉,王腾宇,鲁才.图神经网络在知识图谱构建与应用中的研究进展[J].计算机科学与探索, 2023, 17(10):2278-2299. XU X R, WANG T Y, LU C. Research progress of graph neural network in knowledge graph construction and application[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(10):2278-2299.(in Chinese) [2] JI S, PAN S, CAMBRIA E, et al. A survey on knowledge graphs:representation, acquisition, and applications[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(2):494-514. [3] CAO Y X, WANG X, HE X N, et al. Unifying knowledge graph learning and recommendation:towards a better understanding of user preferences[C]//Proceedings of the World Wide Web Conference. New York, USA:ACM Press, 2019:151-161. [4] ZENG X X, TU X Q, LIU Y S, et al. Toward better drug discovery with knowledge graph[J]. Current Opinion in Structural Biology, 2022, 72:114-126. [5] BORDES A, USUNIER N, GARCIA-DURÁN A, et al. Translating embeddings for modeling multi-relational data[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. New York, USA:ACM Press, 2013:2787-2795. [6] LIN Y K, LIU Z Y, SUN M S, et al. Learning entity and relation embeddings for knowledge graph completion[C]//Proceedings of the 29th AAAI Conference on Artificial Intelligence. New York, USA:ACM Press, 2015:2181-2187. [7] DETTMERS T, MINERVINI P, STENETORP P, et al. Convolutional 2D knowledge graph embeddings[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence and 30th Innovative Applications of Artificial Intelligence Conference and 8th AAAI Symposium on Educational Advances in Artificial Intelligence. New York, USA:ACM Press, 2018:1811-1818. [8] SUN Z, DENG Z, NIE J, et al. RotatE:knowledge graph embedding by relational rotation in complex space[C]//Proceedings of the 7th International Conference on Learning Representations. New York, USA:ACM Press, 2019:1-18. [9] 杜雪盈,刘名威,沈立炜,等.面向链接预测的知识图谱表示学习方法综述[J].软件学报, 2024, 35(1):87-117. DU X Y, LIU M W, SHEN L W, et al. Survey on representation learning methods of knowledge graph for link prediction[J]. Journal of Software, 2024, 35(1):87-117.(in Chinese) [10] TERU K K, DENIS E G, HAMILTON W L, et al. Inductive relation prediction by subgraph reasoning[C]//Proceedings of the 37th International Conference on Machine Learning. New York, USA:ACM Press, 2020:9448-9457. [11] MEILICKE C, FINK M, WANG Y J, et al. Fine-grained evaluation of rule-and embedding-based systems for knowledge graph completion[C]//Proceedings of the 17th International Semantic Web Conference. Berlin, Germany:Springer, 2018:3-20. [12] LI Y L, YU K, ZHANG Y H, et al. Learning relation-specific representations for few-shot knowledge graph completion[EB/OL].[2023-10-08] . https://arxiv.org/abs/2203.11639v2. [13] ZHENG S J, MAI S J, SUN Y, et al. Subgraph-aware few-shot inductive link prediction via meta-learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 35(6):6512-6517. [14] SCHLICHTKRULL M, KIPF T N, BLOEM P, et al. Modeling relational data with graph convolutional networks[C]//Proceedings of the 17th International Semantic Web Conference. Berlin, Germany:Springer, 2018:593-607. [15] YE R, LI X, FANG Y J, et al. A vectorized relational graph convolutional network for multi-relational network alignment[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence. New York, USA:ACM Press, 2019:4135-4141. [16] HAMILTON W L, YING R, LESKOVEC J, et al. Inductive representation learning on large graphs[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York, USA:ACM Press, 2017:1025-1035. [17] NATHANI D, CHAUHAN J, SHARMA C, et al. Learning attention-based embeddings for relation prediction in knowledge graphs[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA:ACL, 2019:4710-4723. [18] 官赛萍,靳小龙,贾岩涛,等.面向知识图谱的知识推理研究进展[J].软件学报, 2018, 29(10):2966-2994. GUAN S P, JIN X L, JIA Y T, et al. Knowledge reasoning over knowledge graph:a survey[J]. Journal of Software, 2018, 29(10):2966-2994.(in Chinese) [19] LI S, XU H R, LU Z D. Generalize symbolic knowledge with neural rule engine[EB/OL].[2023-10-08] . https://arxiv.org/abs/1808.10326v3. [20] SADEGHIAN A, ARMANDPOUR M, DING P, et al. DRUM:end-to-end differentiable rule mining on knowledge graphs[EB/OL].[2023-10-08] . https://arxiv.org/abs/1911.00055?context=cs.LO. [21] MAI S J, ZHENG S J, YANG Y D, et al. Communicative message passing for inductive relation reasoning[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(5):4294-4302. [22] ZHANG Y Q, YAO Q M, ZHANG Y Q, et al. Knowledge graph reasoning with relational digraph[C]//Proceedings of the 2022 ACM Web Conference. New York, USA:ACM Press, 2022:912-924. [23] XIONG W H, YU M, CHANG S Y, et al. One-shot relational learning for knowledge graphs[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA:ACL, 2018:1980-1990. [24] ZHANG C X, YAO H X, HUANG C, et al. Few-shot knowledge graph completion[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(3):3041-3048. [25] SHENG J W, GUO S, CHEN Z Y, et al. Adaptive attentional network for few-shot knowledge graph completion[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). Stroudsburg, USA:ACL, 2020:1681-1691. [26] YANG R T, WEI Z C, FAN Y J, et al. A few-shot inductive link prediction model in knowledge graphs[J]. IEEE Access, 2022, 10:97370-97380. [27] LI J T, WU R F, SUN W B, et al. What's behind the mask:understanding masked graph modeling for graph autoencoders[C]//Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining.New York, USA:ACM Press, 2023:1268-1279. [28] TOUTANOVA K, CHEN D Q, PANTEL P, et al. Representing text for joint embedding of text and knowledge bases[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA:ACL, 2015:1499-1509. [29] XIONG W H, HOANG T, WANG W Y. DeepPath:a reinforcement learning method for knowledge graph reasoning[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA:ACL, 2017:564-573. |