作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2025, Vol. 51 ›› Issue (7): 127-139. doi: 10.19678/j.issn.1000-3428.0069257

• 人工智能与模式识别 • 上一篇    下一篇

基于YOLOv8改进的跌倒检测算法: OEF-YOLO

宋杰1, 徐慧英1,*(), 朱信忠1, 黄晓2, 陈晨1, 王泽宇1   

  1. 1. 浙江师范大学计算机科学与技术学院, 浙江 金华 321004
    2. 浙江师范大学教育学院, 浙江 金华 321004
  • 收稿日期:2024-01-19 出版日期:2025-07-15 发布日期:2024-06-20
  • 通讯作者: 徐慧英
  • 基金资助:
    国家自然科学基金(62376252); 浙江省自然科学基金重点项目(LZ22F030003); 国家级大学生创新训练计划重点项目(202310345042)

Improved Fall Detection Algorithm Based on YOLOv8: OEF-YOLO

SONG Jie1, XU Huiying1,*(), ZHU Xinzhong1, HUANG Xiao2, CHEN Chen1, WANG Zeyu1   

  1. 1. College of Computer Science and Technology, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
    2. College of Education, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
  • Received:2024-01-19 Online:2025-07-15 Published:2024-06-20
  • Contact: XU Huiying

摘要:

在室内场景下, 受角度、光线变化等因素的影响, 导致现有目标检测算法检测跌倒事件时检测精度降低、实时性变差。为此, 提出一种基于YOLOv8改进的跌倒检测算法OEF-YOLO。采用全维动态卷积(ODConv)模块改进YOLOv8中的C2f模块, 优化了核空间的4个维度以增强特征提取能力, 而且有效减少了计算负担。同时, 为了捕获更细粒度的特征, 在颈部网络中引入高效多尺度注意力(EMA)模块, 进一步聚合像素级特征, 提高网络在跌倒场景中的处理能力。在CIoU损失函数中融入Focal Loss思想, 使模型对难分类样本给予更多关注, 优化模型整体性能。实验结果表明, 相比YOLOv8n, OEF-YOLO跌倒检测算法在mAP@0.5指标上提升了1.5百分点, mAP@0.5∶0.95提升1.4百分点, 参数量和计算量分别为3.1×106和6.5 GFLOPs, 在图形处理器(GPU)上FPS提高了44, 在提高精度检测跌倒事件的同时, 兼顾了低算力场景下的部署要求。

关键词: 目标检测, 轻量化, 跌倒事件, 注意力机制, 全维动态卷积

Abstract:

Existing object detection algorithms suffer from low detection accuracy and poor real-time performance when detecting fall events in indoor scenes, owing to changes in angle and light. In response to this challenge, this study proposes an improved fall detection algorithm based on YOLOv8, called OEF-YOLO. The C2f module in YOLOv8 is improved by using a Omni-dimensional Dynamic Convolution (ODConv) module, optimizing the four dimensions of the kernel space to enhance feature extraction capabilities and effectively reduce computational burden. Simultaneously, to capture finer grained features, the Efficient Multi-scale Attention (EMA) module is introduced into the neck network to further aggregate pixel-level features and improve the network's processing ability in fall scenes. Integrating the Focal Loss idea into the Complete Intersection over Union (CIoU) loss function allows the model to pay more attention to difficult-to-classify samples and optimize overall model performance. Experimental results show that compared to YOLOv8n, OEF-YOLO achieves improvements of 1.5 and 1.4 percentage points in terms of mAP@0.5 and mAP@0.5∶0.95, the parameters and computational complexity are 3.1×106 and 6.5 GFLOPs. Frames Per Second (FPS) increases by 44 on a Graphic Processing Unit (GPU), achieving high-precision detection of fall events while also meeting deployment requirements in low computing scenarios.

Key words: object detection, lightweight, falling incidents, attention mechanism, Omni-dimensional Dynamic Convolution(ODConv)