1 |
闫玉娟, 李化, 赵菊敏, 等. 基于CRFID和模式识别的跌倒检测系统. 计算机工程, 2019, 45 (6): 297-302, 309.
URL
|
|
YAN Y J, LI H, ZHAO J M, et al. Fall detection system based on CRFID and pattern recognition. Computer Engineering, 2019, 45 (6): 297-302, 309.
URL
|
2 |
陈文轩, 曾碧, 郭植星. 融合多特征与语义图卷积网络的摔倒检测方法. 计算机工程, 2023, 49 (5): 277-285, 294.
URL
|
|
CHEN W X, ZENG B, GUO Z X. Fall detection method integrating multi-feature and semantic graph convolution network. Computer Engineering, 2023, 49 (5): 277-285, 294.
URL
|
3 |
陈明祥, 王钰, 刘环宇, 等. 基于人体稳定性的实时跌倒检测系统. 传感器与微系统, 2023, 42 (6): 17- 20.
doi: 10.13873/J.1000-9787(2023)06-0017-04
|
|
CHEN M X, YU Y, LIU H Y, et al. Real-time fall detection system based on human stability. Transducer and Microsystem Technologies, 2023, 42 (6): 17- 20.
doi: 10.13873/J.1000-9787(2023)06-0017-04
|
4 |
RAZA A, YOUSAF M H, VELASTIN S A. Human fall detection using YOLO: a real-time and AI-on-the-edge perspective[C]//Proceedings of the 12th International Conference on Pattern Recognition Systems (ICPRS). Washington D. C., USA: IEEE Press, 2022: 1-6.
URL
|
5 |
LONG K Z, HARON H, IBRAHIM M, et al. An image-based fall detection system using You Only Look Once (YOLO) algorithm to monitor elders' fall events[C]//Proceedings of Knowledge Management International Conference (KMICe). Berlin, Germany: Springer, 2021: 1-10.
URL
|
6 |
YIN Y, LEI L, LIANG M, et al. Research on fall detection algorithm for the elderly living alone based on YOLO[C]//Proceedings of 2021 IEEE International Conference on Emergency Science and Information Technology (ICESIT). Washington D. C., USA: IEEE Press, 2021: 403-408.
|
7 |
WANG X, JIA K. Human fall detection algorithm based on YOLOv3[C]//Proceedings of the 5th International Conference on Image, Vision and Computing. Washington D. C., USA: IEEE Press, 2020: 50-54.
URL
|
8 |
LÜ X J, GAO Z L, YUAN C S, et al. Hybrid real-time fall detection system based on deep learning and multi-sensor fusion[C]//Proceedings of the 6th International Conference on Big Data and Information Analytics. Washington D. C., USA: IEEE Press, 2020: 386-391.
URL
|
9 |
CHEN Y S, DU R X, LUO K T, et al. Fall detection system based on real-time pose estimation and SVM[C]//Proceedings of the 2nd International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE). Washington D. C., USA: IEEE Press, 2021: 990-993.
URL
|
10 |
ZHENG H, LIU Y. Lightweight fall detection algorithm based on alphapose optimization model and ST-GCN. Mathematical Problems in Engineering, 2022, 2022 (1): 9962666.
|
11 |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149.
doi: 10.1109/TPAMI.2016.2577031
|
12 |
CAI Z W, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 6154-6162.
URL
|
13 |
URL
|
14 |
赵冬冬, 谢墩翰, 陈朋, 等. 基于ZYNQ的轻量化YOLOv5声呐图像目标检测算法及实现. 光电工程, 2024, 51 (1): 230284.
doi: 10.12086/oee.2024.230284
|
|
ZHAO D D, XIE D H, CHEN P, et al. Lightweight YOLOv5 sonar image object detection algorithm and implementation based on ZYNQ. Opto-Electronic Engineering, 2024, 51 (1): 230284.
doi: 10.12086/oee.2024.230284
|
15 |
|
16 |
URL
|
17 |
ZHENG Z H, WANG P, REN D W, et al. Enhancing geometric factors in model learning and inference for object detection and instance segmentation. IEEE Transactions on Cybernetics, 2021, 52 (8): 8574- 8586.
doi: 10.48550/arXiv.2005.03572
|
18 |
URL
|
19 |
WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2023: 7464-7475.
URL
|
20 |
LI C Y, LI L L, JIANG H L, et al. YOLOv6: a single-stage object detection framework for industrial applications[EB/OL]. [2023-12-15]. https://arxiv.org/abs/2209.02976.
|
21 |
WANG C Y, LIAO H Y M, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Washington D. C., USA: IEEE Press, 2020: 390-391.
URL
|
22 |
LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 8759-8768.
URL
|
23 |
LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 2117-2125.
URL
|
24 |
CHEN Y P, DAI X Y, LIU M C, et al. Dynamic convolution: attention over convolution kernels[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 11030-11039.
URL
|
25 |
HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 13713-13722.
URL
|
26 |
ZHANG X D, ZENG H, GUO S, et al. Efficient long-range attention network for image super-resolution[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2022: 649-667.
URL
|
27 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 770-778.
URL
|
28 |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2017: 2980-2988.
URL
|
29 |
KWOLEK B, KEPSKI M. Human fall detection on embedded platform using depth maps and wireless accelerometer. Computer Methods and Programs in Biomedicine, 2014, 117 (3): 489- 501.
doi: 10.1016/j.cmpb.2014.09.005
|
30 |
ADHIKARI K, BOUCHACHIA H, NAIT-CHARIF H. Activity recognition for indoor fall detection using convolutional neural network[C]//Proceedings of the 15th IAPR International Conference on Machine Vision Applications (MVA). Washington D. C., USA: IEEE Press, 2017: 81-84.
URL
|
31 |
|
32 |
CHEN J R, KAO S H, HE H, et al. Run, don't walk: chasing higher FLOPS for faster neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2023: 12021-12031.
URL
|
33 |
DING X H, ZHANG X Y, HAN J G, et al. Diverse branch block: building a convolution as an inception-like unit[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 10886-10895.
URL
|
34 |
ZHENG Z H, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[EB/OL]. [2023-12-15]. https://arxiv.org/abs/1911.08287.
|
35 |
REZATOFIGHI H, TSOI N, GWAK J Y, et al. Generalized intersection over union: a metric and a loss for bounding box regression[EB/OL]. [2023-12-15]. https://arxiv.org/abs/1902.09630.
URL
|
36 |
|
37 |
ZHAO Y, LÜ W, XU S, et al. DETRs beat YOLOs on real-time object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2024: 16965-16974.
|
38 |
ADARSH P, RATHI P, KUMAR M. YOLOv3-Tiny: object detection and recognition using one stage improved model[C]//Proceedings of the 6th International Conference on Advanced Computing and Communication Systems (ICACCS). Washington D. C., USA: IEEE Press, 2020: 687-694.
URL
|
39 |
URL
|
40 |
|
41 |
朱胜豪, 钱承山, 阚希. 改进YOLOv5的高精度跌倒检测算法. 计算机工程与应用, 2024, 60 (11): 105- 114.
doi: 10.3778/j.issn.1002-8331.2307-0190
|
|
ZHU S H, QIAN C S, KAN X. High-precision fall detection algorithm with improved YOLOv5. Computer Engineering and Application, 2024, 60 (11): 105- 114.
doi: 10.3778/j.issn.1002-8331.2307-0190
|