1 |
BERNARDINI F , MITTLEMAN J , RUSHMEIER H , et al. The ball-pivoting algorithm for surface reconstruction. IEEE Transactions on Visualization and Computer Graphics, 1999, 5 (4): 349- 359.
doi: 10.1109/2945.817351
|
2 |
GROUEIX T, FISHER M, KIM V G, et al. A papier-Mache approach to learning 3D surface generation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2018: 216-224.
|
3 |
LIAO Y Y, DONNE S, GEIGER A. Deep marching cubes: learning explicit surface representations[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2018: 2916-2925.
|
4 |
KAZHDAN M , HOPPE H . Screened poisson surface reconstruction. ACM Transactions on Graphics, 2013, 32 (3): 1- 13.
|
5 |
CHEN Z Q, ZHANG H. Learning implicit fields for generative shape modeling[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2019: 5939-5948.
|
6 |
梁春阳, 唐红梅, 席建锐, 等. 基于稀疏特征改进的单视图表面重建. 计算机应用研究, 2023, 40 (3): 925-931, 937.
doi: 10.19734/j.issn.1001-3695.2022.06.0320
|
|
LIANG C Y , TANG H M , XI J R , et al. 925-931, 937. Improved single-view surface reconstruction based on sparse feature. Application Research of Computers, 2023, 40 (3): 925- 931.
doi: 10.19734/j.issn.1001-3695.2022.06.0320
|
7 |
张冀, 郑传哲. 基于多尺度CNN-RNN的单图三维重建网络. 计算机应用研究, 2020, 37 (11): 3487- 3491.
doi: 10.19734/j.issn.1001-3695.2019.08.0251
|
|
ZHANG J , ZHENG C Z . 3D reconstruction network based on multi-scale CNN-RNN. Application Research of Computers, 2020, 37 (11): 3487- 3491.
doi: 10.19734/j.issn.1001-3695.2019.08.0251
|
8 |
MESCHEDER L, OECHSLE M, NIEMEYER M, et al. Occupancy networks: learning 3D reconstruction in function space[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2019: 4460-4470.
|
9 |
PARK J J, FLORENCE P, STRAUB J, et al. DeepSDF: learning continuous signed distance functions for shape representation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2019: 165-174.
|
10 |
席建锐, 唐红梅, 梁春阳, 等. 基于改进隐函数的点云物体重建. 计算机工程, 2023, 49 (7): 214- 222.
URL
|
|
XI J R , TANG H M , LIANG C Y , et al. Point cloud object reconstruction based on improved implicit function. Computer Engineering, 2023, 49 (7): 214- 222.
URL
|
11 |
GROPP A, YARIV L, HAIM N, et al. Implicit geometric regularization for learning shapes[C]//Proceedings of International Conference on Machine Learning (PMLR). New York, USA: ACM Press, 2020: 3789-3799.
|
12 |
ZHOU J , MA B , LIU Y S , et al. Learning consistency-aware unsigned distance functions progressively from raw point clouds. Advances in Neural Information Processing Systems, 2022, 35, 16481- 16494.
|
13 |
CHABRA R, LENSSEN J E, ILG E, et al. Deep local shapes: learning local SDF priors for detailed 3D reconstruction[C]//Proceedings of the 16th European Conference on Computer Vision (ECCV). Berlin, Germany: Springer, 2020: 608-625.
|
14 |
JIANG C Y, SUD A, MAKADIA A, et al. Local implicit grid representations for 3D scenes[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2020: 6001-6010.
|
15 |
PENG S Y, NIEMEYER M, MESCHEDER L, et al. Convolutional occupancy networks[C]//Proceedings of the 16th European Conference on Computer Vision (ECCV). Berlin, Germany: Springer, 2020: 523-540.
|
16 |
LIONAR S, EMTSEV D, SVILARKOVIC D, et al. Dynamic plane convolutional occupancy networks[C]//Proceedings of the IEEE Winter Conference on Applications of Computer Vision (WACV). Washington D. C., USA: IEEE Press, 2021: 1829-1838.
|
17 |
MAO Q , LI R , ZHU Y , et al. Enhancing 3D-2D representations for convolution occupancy networks. Pattern Recognition, 2023, 134, 109097.
|
18 |
WILLIAMS F, GOJCIC Z, KHAMIS S, et al. Neural fields as learnable kernels for 3D reconstruction[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2022: 18500-18510.
|
19 |
CHIBANE J, ALLDIECK T, PONS-MOLL G. Implicit functions in feature space for 3D shape reconstruction and completion[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2020: 6970-6981.
|
20 |
|
21 |
YE J L, CHEN Y T, WANG N Y, et al. GIFS: neural implicit function for general shape representation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2022: 12829-12839.
|
22 |
CHEN W K, LIN C, LI W Y, et al. 3PSDF: three-pole signed distance function for learning surfaces with arbitrary topologies[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2022: 18522-18531.
|
23 |
BOULCH A, MARLET R. POCO: point convolution for surface reconstruction[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2022: 6302-6314.
|
24 |
JIANG H Y, CAI J F, ZHENG J M, et al. Neighborhood-based neural implicit reconstruction from point clouds[C]// Proceedings of the International Conference on 3D Vision (3DV). Washington D. C., USA: IEEE Press, 2021: 1259-1268.
|
25 |
GIEBENHAIN S, GOLDLUCKE B. AIR-nets: an attention-based framework for locally conditioned implicit representations[C]//Proceedings of the International Conference on 3D Vision (3DV). Washington D. C., USA: IEEE Press, 2021: 1054-1064.
|
26 |
ERLER P, GUERRERO P, OHRHALLINGER S, et al. Points2Surf learning implicit surfaces from point clouds[C]// Proceedings of the 16th European Conference on Computer Vision (ECCV). Berlin, Germany: Springer, 2020: 108-124.
|
27 |
LORENSEN W E , CLINE H E . Marching cubes: a high resolution 3D surface construction algorithm. ACM SIGGRAPH Computer Graphics, 1987, 21 (4): 163- 169.
|
28 |
CHARLES R Q, HAO S, MO K C, et al. PointNet: deep learning on point sets for 3D classification and segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2017: 652-660.
|
29 |
ÇIÇEK Ö, ABDULKADIR A, LIENKAMP S S, et al. 3D U-Net: learning dense volumetric segmentation from sparse annotation[C]// Proceedings of International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI). Berlin, Germany: Springer, 2016: 424-432.
|
30 |
|
31 |
|
32 |
KOCH S, MATVEEV A, JIANG Z S, et al. ABC: a big CAD model dataset for geometric deep learning[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2019: 9601-9611.
|