作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2025, Vol. 51 ›› Issue (7): 119-126. doi: 10.19678/j.issn.1000-3428.0069420

• 人工智能与模式识别 • 上一篇    下一篇

基于双分支卷积和深度插值的点云表面重建

孟波, 史旭华*(), 张彬   

  1. 宁波大学信息科学与工程学院,浙江 宁波 315211
  • 收稿日期:2024-02-26 出版日期:2025-07-15 发布日期:2025-07-14
  • 通讯作者: 史旭华
  • 基金资助:
    国家自然科学基金(61773225); 宁波市重点研发计划“揭榜挂帅”项目(2023Z067)

Point Cloud Surface Reconstruction Based on Dual-Branch Convolution and Deep Interpolation

MENG Bo, SHI Xuhua*(), ZHANG Bin   

  1. Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, Zhejiang, China
  • Received:2024-02-26 Online:2025-07-15 Published:2025-07-14
  • Contact: SHI Xuhua

摘要:

随着近年来深度学习的快速发展,基于深度学习重建稀疏、含有噪声的低质量点云表面成为当前的研究热点。目前已有的点云表面重建模型还存在难以重建复杂场景、局部细节重建不完整以及重建效率低等问题。为了进一步提高点云表面重建的效果,结合卷积占用网络模型,提出一种基于双分支卷积和深度插值的点云表面重建模型。首先,使用PointNet网络和双分支卷积构建的融合卷积编码模块进行特征提取,其中双分支卷积将点分支提取的点特征自适应地融入到体素分支的体积特征中,为体积特征提供更细粒的局部信息;然后,结合邻居点特征,通过一个多头注意力网络生成查询点特征,构建深度插值特征模块,使得用于特征解码的全连接层(FC)网络预测查询点的空间位置更加准确;最后,基于移动立方体(MC)算法提取高质量的网格表面模型。在对象级数据集ShapeNet以及场景级数据集Synthetic Rooms上的实验结果表明,所提模型在交并比(IoU)指标上分别达到了0.931和0.910,优于POCONet、ConvONet、DP-ConvONet等对比模型,在Synthetic Rooms上的平均重建时间上较POCONet大幅减少,且在视觉上表现出了良好的效果;在对象级数据集ABC上体现了模型优越的泛化性能,证明了所提模型的有效性。

关键词: 表面重建, 双分支卷积, 深度插值, 点云, 深度学习, 移动立方体算法

Abstract:

With the rapid development of deep learning in recent years, the reconstruction of sparse and noisy low-quality point cloud surfaces based on deep learning has attracted increasing attention from researchers. Existing point cloud surface reconstruction models present limitations such as difficulty in reconstructing complex scenes, incomplete local detail reconstruction, and low reconstruction efficiency. To address these limitations, this paper proposes a point cloud surface reconstruction model based on dual-branch convolution and deep interpolation combined with a convolution occupancy network model. First, a fusion convolution coding module constructed using a PointNet network and dual-branch convolution is used for feature extraction. The dual-branch convolution adaptively integrates point features extracted by the point branch into the volume feature of the voxel branch to provide more fine-grained local information for the volume feature. Subsequently, query point features in combination with the characteristics of neighbor points are generated through a multi-head attention network. Further, a deep interpolation feature module is constructed to improve the accuracy of the Fully Connected (FC) layer network for feature decoding in predicting the spatial location of query points. Finally, a high-quality mesh surface model is extracted based on the Marching Cubes (MC) algorithm. Results of experiments on the object-level dataset ShapeNet and the scene-level dataset Synthetic Rooms show that the proposed model achieves an Intersection over Union (IoU) metric of 0.931 and 0.910 respectively. It outperforms the comparative models such as POCONet, ConvONet, and DP-ConvONet. On the Synthetic Rooms dataset, the average reconstruction time of the proposed model is significantly reduced compared to that of the POCONet model, and it also demonstrates good visual performance. On the object-level dataset ABC, the proposed model exhibits superior generalization performance, which proves the effectiveness of the proposed model.

Key words: surface reconstruction, dual-branch convolution, deep interpolation, point cloud, deep learning, Marching Cubes (MC) algorithm