1 |
SELINGER P G, ASTRAHAN M M, CHAMBERLIN D D, et al. Access path selection in a relational database management system[C]//Proceedings of the 1979 ACM SIGMOD International Conference on Management of Data. New York, USA: ACM Press, 1979: 23-34.
|
2 |
李国良, 周煊赫, 孙佶, 等. 基于机器学习的数据库技术综述. 计算机学报, 2020, 43 (11): 2019- 2049.
URL
|
|
LI G L , ZHOU X H , SUN J , et al. A survey of machine learning based database techniques. Chinese Journal of Computers, 2020, 43 (11): 2019- 2049.
URL
|
3 |
LEIS V , GUBICHEV A , MIRCHEV A , et al. How good are query optimizers, really?. Proceedings of the VLDB Endowment, 2015, 9 (3): 204- 215.
|
4 |
IBARAKI T , KAMEDA T . On the optimal nesting order for computing N-relational joins. ACM Transactions on Database Systems, 1984, 9 (3): 482- 502.
|
5 |
BABCOCK B, CHAUDHURI S. Towards a robust query optimizer: a principled and practical approach[C]//Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data. New York, USA: ACM Press, 2005: 1-8.
|
6 |
周维清. 基于学习的数据库查询优化方法研究[D]. 成都: 电子科技大学, 2023.
|
|
ZHOU W Q. Research on database query optimization method based on learning[D]. Chengdu: University of Electronic Science and Technology of China, 2023. (in Chinese)
|
7 |
陈婷. 面向复杂连接的连接顺序选择策略评测方法[D]. 上海: 华东师范大学, 2023.
|
|
CHEN T. Evaluation method of connection sequence selection strategy for complex connections[D]. Shanghai: East China Normal University, 2023. (in Chinese)
|
8 |
VAN AKEN D, PAVLO A, GORDON G J, et al. Automatic database management system tuning through large-scale machine learning[C]//Proceedings of the 2017 ACM International Conference on Management of Data. New York, USA: ACM Press, 2017: 1009-1024.
|
9 |
|
10 |
ARULKUMARAN K , DEISENROTH M P , BRUNDAGE M , et al. Deep reinforcement learning: a brief survey. IEEE Signal Processing Magazine, 2017, 34 (6): 26- 38.
URL
|
11 |
HUA H Z, WEN G X, WU K G. Building decision forest via deep reinforcement learning[C]//Proceedings of the International Joint Conference on Neural Networks (IJCNN). Washington D.C., USA: IEEE Press, 2023: 1-8.
|
12 |
BORDAWEKAR R, SHMUELI O. Using word embedding to enable semantic queries in relational databases[C]//Proceedings of the 1st Workshop on Data Management for End-to-End Machine Learning. New York, USA: ACM Press, 2017: 1-4.
|
13 |
MNIH V , KAVUKCUOGLU K , SILVER D , et al. Human-level control through deep reinforcement learning. Nature, 2015, 518 (7540): 529- 533.
doi: 10.1038/nature14236
|
14 |
KARNAGEL T , HABICH D , LEHNER W . Adaptive work placement for query processing on heterogeneous computing resources. Proceedings of the VLDB Endowment, 2017, 10 (7): 733- 744.
doi: 10.14778/3067421.3067423
|
15 |
SCHAAL S . Learning from demonstration. Berlin, Germany: Springer, 1996.
|
16 |
|
17 |
SILVER D , HUANG A , MADDISON C J , et al. Mastering the game of go with deep neural networks and tree search. Nature, 2016, 529 (7587): 484- 489.
doi: 10.1038/nature16961
|
18 |
YU X, LI G L, CHAI C L, et al. Reinforcement learning with Tree-LSTM for join order selection[C]//Proceedings of the IEEE 36th International Conference on Data Engineering (ICDE). Washington D.C., USA: IEEE Press, 2020: 1297-1308.
|
19 |
TAI K S, SOCHER R, MANNING C D. Improved semantic representations from tree-structured long short-term memory networks[EB/OL]. [2023-10-07]. https://arxiv.org/abs/1503.00075.
|
20 |
KRASKA T, ALIZADEH M, BEUTEL A, et al. SageDB: a learned database system[C]//Proceedings of 9th Biennial Conference on Innovative Data Systems Research. Cambridge, USA: MIT, 2021: 1-10.
|
21 |
MARCUS R, NEGI P, MAO H Z, et al. Bao: making learned query optimization practical[C]//Proceedings of the 2021 International Conference on Management of Data. New York, USA: ACM Press, 2021: 1275-1288.
|
22 |
CHAPELLE O, LI L. An empirical evaluation of Thompson sampling[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2011: 2249-2257.
|
23 |
NEGI P, MARCUS R, MAO H Z, et al. Cost-guided cardinality estimation: focus where it matters[C]//Proceedings of the IEEE 36th International Conference on Data Engineering Workshops (ICDEW). Washington D.C., USA: IEEE Press, 2020: 154-157.
|
24 |
MOU L L, LI G, ZHANG L, et al. Convolutional neural networks over tree structures for programming language processing[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, USA: AAAI Press, 2016: 1287-1293.
|
25 |
YU X , CHAI C L , LI G L , et al. Cost-based or learning-based?. Proceedings of the VLDB Endowment, 2022, 15 (13): 3924- 3936.
|
26 |
|
27 |
HVLLERMEIER E , WAEGEMAN W . Aleatoric and epistemic uncertainty in machine learning: an introduction to concepts and methods. Machine Learning, 2021, 110 (3): 457- 506.
doi: 10.1007/s10994-021-05946-3
|
28 |
OVADIA Y, FERTIG E, REN J, et al. Can you trust your model's uncertainty? Evaluating predictive uncertainty under dataset shift[EB/OL]. [2023-10-07]. https://arxiv.org/abs/1906.02530.
|
29 |
KIM G S, PAIK M C. Contextual multi-armed bandit algorithm for semiparametric reward model[C]//Proceedings of International Conference on Machine Learning. [S. l. ]: PMLR, 2019: 3389-3397.
|
30 |
CHEN T Y , GAO J , CHEN H D , et al. LOGER: a learned optimizer towards generating efficient and robust query execution plans. Proceedings of the VLDB Endowment, 2023, 16 (7): 1777- 1789.
|
31 |
|
32 |
王江晴, 王雪言, 孙翀, 等. 用于多表连接优化的深度强化学习嵌入表示. 计算机工程与设计, 2023, 44 (2): 576- 581.
|
|
WANG J Q , WANG X Y , SUN C , et al. Deep reinforcement learning embedding representation for multi-relation join optimization. Computer Engineering and Design, 2023, 44 (2): 576- 581.
|
33 |
MARCUS R, PAPAEMMANOUIL O. Deep reinforcement learning for join order enumeration[C]//Proceedings of the 1st International Workshop on Exploiting Artificial Intelligence Techniques for Data Management. New York, USA: ACM Press, 2018: 1-4.
|
34 |
KRISHNAN S, YANG Z, GOLDBERG K, et al. Learning to optimize join queries with deep reinforcement learning[EB/OL]. [2023-10-07]. https://arxiv.org/abs/1808.03196.
|
35 |
NEUMANN T, RADKE B. Adaptive optimization of very large join queries[C]//Proceedings of the 2018 International Conference on Management of Data. New York, USA: ACM Press, 2018: 677-692.
|
36 |
YANG Z H, CHIANG W L, LUAN S F, et al. Balsa: learning a query optimizer without expert demonstrations[C]//Proceedings of the 2022 International Conference on Management of Data. New York, USA: ACM Press, 2022: 931-944.
|
37 |
LEIS V , RADKE B , GUBICHEV A , et al. Query optimization through the looking glass, and what we found running the Join Order Benchmark. The VLDB Journal, 2018, 27 (5): 643- 668.
doi: 10.1007/s00778-017-0480-7
|
38 |
TOBIN J, FONG R, RAY A, et al. Domain randomization for transferring deep neural networks from simulation to the real world[C]//Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Washington D.C., USA: IEEE Press, 2017: 23-30.
|
39 |
CHEN J, YE G Y, ZHAO Y, et al. Efficient join order selection learning with graph-based representation[C]//Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2022: 97-107.
|
40 |
PEROZZI B, AL-RFOU R, SKIENA S. DeepWalk: online learning of social representations[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2014: 701-710.
|
41 |
WANG X , CHEN Y D , ZHU W W . A survey on curriculum learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44 (9): 4555- 4576.
doi: 10.1109/TPAMI.2021.3069908
|
42 |
ZHOU W Q, ZHAN S Y, DAI B, et al. SOAR: a learned join order selector with graph attention mechanism[C]//Proceedings of the International Joint Conference on Neural Networks (IJCNN). Washington D.C., USA: IEEE Press, 2022: 1-8.
|
43 |
|
44 |
|
45 |
|
46 |
|
47 |
LIU T Y . Learning to rank for information retrieval. Berlin, Germany: Springer, 2011.
|
48 |
赵润哲. 基于深度强化学习的数据库查询优化方法研究[D]. 郑州: 郑州大学, 2022.
|
|
ZHAO R Z. Research on database query optimization method based on deep reinforcement learning[D]. Zhengzhou: Zhengzhou University, 2022. (in Chinese)
|
49 |
KRASKA T, BEUTEL A, CHI E H, et al. The case for learned index structures[C]//Proceedings of the 2018 International Conference on Management of Data. New York, USA: ACM Press, 2018: 489-504.
|
50 |
CAPPUZZO R, PAPOTTI P. Creating embeddings of heterogeneous relational datasets for data integration tasks[C]//Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data. New York, USA: ACM Press, 2020: 1335-1349.
|
51 |
SUN J , LI G L . An end-to-end learning-based cost estimator. Proceedings of the VLDB Endowment, 2019, 13 (3): 307- 319.
doi: 10.14778/3368289.3368296
|
52 |
LI G L , ZHOU X H , LI S F , et al. QTune. Proceedings of the VLDB Endowment, 2019, 12 (12): 2118- 2130.
|
53 |
SABEK I, UKYAB T S, KRASKA T. LSched: a workload-aware learned query scheduler for analytical database systems[C]//Proceedings of the 2022 International Conference on Management of Data. New York, USA: ACM Press, 2022: 1228-1242.
|