1 |
余良俊, 甘胜丰, 范正薇. 属性值加权的一依赖估测器模型分类算法研究. 计算机工程, 2020, 46(11): 315- 320.
doi: 10.19678/j.issn.1000-3428.0056498
|
|
YU L J, GAN S F, FAN Z W. Research on classification algorithm combining weighted attribute values with one-dependence estimator model. Computer Engineering, 2020, 46(11): 315- 320.
doi: 10.19678/j.issn.1000-3428.0056498
|
2 |
YANG X B, WANG Y, LIU X D, et al. High-precision real-time forest fire video detection using one-class model. Forests, 2022, 13(11): 1826.
|
3 |
YANG X B, CHEN R, ZHANG F Q, et al. Pixel-level automatic annotation for forest fire image. Engineering Applications of Artificial Intelligence, 2021, 104, 104353.
|
4 |
JANA S, SHOME S K. Hybrid ensemble based machine learning for SmartBuilding fire detection using multi modal sensor data. Fire Technology, 2023, 59(2): 473- 496.
|
5 |
DU S, ZHANG Y C, SUN Q, et al. Experimental study on color change and compression strength of concrete tunnel lining in a fire. Tunnelling and Underground Space Technology, 2018, 71, 106- 114.
|
6 |
HAYASHI T, FUJITA H, HERNANDEZ-MATAMOROS A. Less complexity one-class classification approach using construction error of convolutional image transformation network. Information Sciences, 2021, 560, 217- 234.
|
7 |
LEI L, WANG X Y, ZHONG Y F, et al. DOCC: deep one-class crop classification via positive and unlabeled learning for multi-modal satellite imagery. International Journal of Applied Earth Observation and Geoinformation, 2021, 105, 102598.
|
8 |
李俊毅, 陈碧欢, 彭鑫, 等. DeepLabel: 基于深度学习的问题单分类方法研究. 计算机应用与软件, 2022, 39(4): 170- 178.
|
|
LI J Y, CHEN B H, PENG X, et al. Deeplabel: labeling issues based on deep learning. Computer Applications and Software, 2022, 39(4): 170- 178.
|
9 |
WANG S Q, LIU Q, ZHU E, et al. Hyperparameter selection of one-class support vector machine by self-adaptive data shifting. Pattern Recognition, 2018, 74, 198- 211.
|
10 |
RAHIMZADEH ARASHLOO S. $ \ell $ p-norm support vector data description. Pattern Recognition, 2022, 132, 108930.
|
11 |
NOVOA-PARADELA D, FONTENLA-ROMERO O, GUIJARRO-BERDIÑAS B. A one-class classification method based on expanded non-convex hulls. Information Fusion, 2023, 89, 1- 15.
|
12 |
ZHU F, YANG J, GAO C, et al. A weighted one-class support vector machine. Neurocomputing, 2016, 189, 1- 10.
|
13 |
TIAN Y J, MIRZABAGHERI M, BAMAKAN S M H, et al. Ramp loss one-class support vector machine; a robust and effective approach to anomaly detection problems. Neurocomputing, 2018, 310, 223- 235.
|
14 |
LIU F, HOU T, ZOU Q. A robust support vector data description classifier[C]//Proceedings of the 32nd Chinese Control Conference. Washington D. C., USA: IEEE Press, 2013: 3781-3784.
|
15 |
ABDIANSAH A, WARDOYO R. Time complexity analysis of support vector machines in LibSVM. International Journal of Computer Applications, 2015, 128(3): 28- 34.
|
16 |
KUMAR B, SINHA A, CHAKRABARTI S, et al. A fast learning algorithm for one-class slab support vector machines. Knowledge-Based Systems, 2021, 228, 107267.
|
17 |
JIANG H S, WANG H Y, HU W H, et al. Fast incremental SVDD learning algorithm with the Gaussian kernel. Artificial Intelligence, 2019, 33(1): 3991- 3998.
|
18 |
TAX D M J, DUIN R P W. Support vector data description. Machine Learning, 2004, 54(1): 45- 66.
|
19 |
MABOUDOU-TCHAO E M, HARRISON C W. A comparative study of L1 and L2 norms in support vector data descriptions. Berlin, Germany: Springer, 2021: 217- 241.
|
20 |
SCHÖLKOPF B, PLATT J C, SHAWE-TAYLOR J, et al. Estimating the support of a high-dimensional distribution. Neural Comput, 2001, 13(7): 1443- 1471.
|
21 |
CRISTIANINI N, SHAWE-TAYLOR J. An introduction to support vector machines: and other kernel-based learning methods. Cambridge, UK: Cambridge University Press, 2000.
|
22 |
YIN S, ZHU X P, JING C. Fault detection based on a robust one class support vector machine. Neurocomputing, 2014, 145, 263- 268.
|
23 |
ZHU W X, SONG Y Y, XIAO Y Y. Huberized one-class support vector machine with truncated loss function in the primal space. Advances in Engineering Software, 2022, 173, 103208.
|
24 |
ZHU J, ROSSET S, TIBSHIRANI R, et al. l-norm support vector machines[C]//Proceedings of Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 2003: 16-30.
|
25 |
YANG H X, YANG X B, ZHANG F Q, et al. Infinite norm large marin classifier. International Journal of Machine Learning and Cybernetics, 2019, 10(9): 2449- 2457.
|
26 |
SCHÖLKOPF B, HERBRICH R, SMOLA A J. A generalized representer theorem. Berlin, Germany: Springer, 2001.
|
27 |
WANG Q, LI B L, CHEN X Y, et al. Random sampling local binary pattern encoding based on Gaussian distribution. IEEE Signal Processing Letters, 2021, 24(9): 1358- 1362.
|
28 |
YANG X B, HUA Z C, ZHANG L, et al. Preferred vector machine for forest fire detection. Pattern Recognition, 2023, 143, 109722.
|