1 |
王猛, 汪海涛, 贺建峰, 等. 知识增强的个性化序列推荐算法. 小型微型计算机系统, 2024, 45 (7): 1561- 1567.
|
|
WANG M , WANG H T , HE J F , et al. Knowledge enhanced personalized sequence recommendation algorithm. Journal of Chinese Computer Systems, 2024, 45 (7): 1561- 1567.
|
2 |
李盼, 解庆, 李琳, 等. 知识增强的图神经网络序列推荐模型. 计算机工程, 2023, 49 (2): 70- 80.
doi: 10.19678/j.issn.1000-3428.0063844
|
|
LI P , XIE Q , LI L , et al. Knowledge-enhanced graph neural network model for sequential recommendation. Computer Engineering, 2023, 49 (2): 70- 80.
doi: 10.19678/j.issn.1000-3428.0063844
|
3 |
HE R N, MCAULEY J. Fusing similarity models with Markov chains for sparse sequential recommendation[C]//Proceedings of the 16th IEEE International Conference on Data Mining (ICDM). Washington D.C., USA: IEEE Press, 2016: 191-200.
|
4 |
SUN F, LIU J, WU J, et al. BERT4Rec: sequential recommendation with bidirectional encoder representations from transformer[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management. New York, USA: ACM Press, 2019: 1441-1450.
|
5 |
KANG W C, MCAULEY J. Self-attentive sequential recommendation[C]//Proceedings of the IEEE International Conference on Data Mining (ICDM). Washington D.C., USA: IEEE Press, 2018: 197-206.
|
6 |
LI J C, WANG Y J, MCAULEY J. Time interval aware self-attention for sequential recommendation[C]//Proceedings of the 13th International Conference on Web Search and Data Mining. New York, USA: ACM Press, 2020: 322-330.
|
7 |
DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[EB/OL]. [2023-11-05]. https://arxiv.org/abs/1810.04805v2.
|
8 |
PENG D L , ZHOU Y . A long-tail alleviation post-processing framework based on personalized diversity of session recommendation. Expert Systems with Applications, 2024, 249, 123769.
doi: 10.1016/j.eswa.2024.123769
|
9 |
ZHOU K, WANG H, ZHAO W X, et al. S3-rec: self-supervised learning for sequential recommendation with mutual information maximization[C]//Proceedings of the 29th ACM International Conference on Information & Knowledge Management. New York, USA: ACM Press, 2020: 1893-1902.
|
10 |
顾嘉静, 杨丹, 聂铁铮, 等. 基于多视图融合跨层对比学习的推荐算法. 计算机工程, 2024, 50 (1): 120- 128.
doi: 10.19678/j.issn.1000-3428.0066906
|
|
GU J J , YANG D , NIE T Z , et al. Recommendation algorithm based on multi-view fusion cross-layer contrastive learning. Computer Engineering, 2024, 50 (1): 120- 128.
doi: 10.19678/j.issn.1000-3428.0066906
|
11 |
HUYNH T, KORNBLITH S, WALTER M R, et al. Boosting contrastive self-supervised learning with false negative cancellation[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). Washington D.C., USA: IEEE Press, 2022: 2785-2795.
|
12 |
NI S , ZHOU W , WEN J H , et al. Enhancing sequential recommendation with contrastive generative adversarial network. Information Processing & Management, 2023, 60 (3): 103331.
URL
|
13 |
XIE X, SUN F, LIU Z Y, et al. Contrastive learning for sequential recommendation[C]//Proceedings of the 38th IEEE International Conference on Data Engineering (ICDE). Washington D.C., USA: IEEE Press, 2022: 1259-1273.
|
14 |
QIU R H, HUANG Z, YIN H Z, et al. Contrastive learning for representation degeneration problem in sequential recommendation[C]//Proceedings of the 15th ACM International Conference on Web Search and Data Mining. New York, USA: ACM Press, 2022: 813-823.
|
15 |
MA G F , YANG X H , LONG H X , et al. Robust social recommendation based on contrastive learning and dual-stage graph neural network. Neurocomputing, 2024, 584, 127597.
doi: 10.1016/j.neucom.2024.127597
|
16 |
|
17 |
WEI Z H , WU N , LI F X , et al. MoCo4SRec: a momentum contrastive learning framework for sequential recommendation. Expert Systems with Applications, 2023, 223, 119911.
doi: 10.1016/j.eswa.2023.119911
|
18 |
|
19 |
LI X W, SUN A T, ZHAO M K, et al. Multi-intention oriented contrastive learning for sequential recommendation[C]//Proceedings of the 16th ACM International Conference on Web Search and Data Mining. New York, USA: ACM Press, 2023: 411-419.
|
20 |
DU H W, SHI H, ZHAO P P, et al. Contrastive learning with bidirectional transformers for sequential recommendation[C]//Proceedings of the 31st ACM International Conference on Information & Knowledge Management. New York, USA: ACM Press, 2022: 396-405.
|
21 |
唐潘, 汪学明. 融合时间感知与兴趣偏好的推荐模型研究. 计算机工程与应用, 2023, 59 (24): 268- 276.
|
|
TANG P , WANG X M . Recommendation model based on time aware and interest preference. Computer Engineering and Applications, 2023, 59 (24): 268- 276.
|
22 |
|
23 |
CHEN Y J, LIU Z W, LI J, et al. Intent contrastive learning for sequential recommendation[C]//Proceedings of the ACM Web Conference 2022. New York, USA: ACM Press, 2022: 2172-2182.
|
24 |
QIU R H, HUANG Z, YIN H Z. Memory augmented multi-instance contrastive predictive coding for sequential recommendation[C]//Proceedings of the IEEE International Conference on Data Mining (ICDM). Washington D.C., USA: IEEE Press, 2021: 519-528.
|
25 |
ZHOU K, YU H, ZHAO W X, et al. Filter-enhanced MLP is all you need for sequential recommendation[C]//Proceedings of the ACM Web Conference 2022. New York, USA: ACM Press, 2022: 2388-2399.
|
26 |
KANG Y , YUAN Y C , PU B , et al. HICL: Hierarchical Intent Contrastive Learning for sequential recommendation. Expert Systems with Applications, 2024, 251, 123886.
URL
|
27 |
WEI W, HUANG C, XIA L H, et al. Contrastive meta learning with behavior multiplicity for recommendation[C]//Proceedings of the 15th ACM International Conference on Web Search and Data Mining. New York, USA: ACM Press, 2022: 1120-1128.
|
28 |
ZOU J, KANOULAS E, REN P J, et al. Improving conversational recommender systems via transformer-based sequential modelling[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM Press, 2022: 2319-2324.
|
29 |
FAN Z W, LIU Z W, WANG Y, et al. Sequential recommendation via stochastic self-attention[C]//Proceedings of the ACM Web Conference 2022. New York, USA: ACM Press, 2022: 2036-2047.
|
30 |
AN G J , SUN J , YANG Y H , et al. Enhancing collaborative information with contrastive learning for session-based recommendation. Information Processing & Management, 2024, 61 (4): 103738.
|