1 |
|
2 |
QIU J Z, DONG Y X, MA H, et al. Network embedding as matrix factorization: unifying DeepWalk, LINE, PTE, and node2vec[C]//Proceedings of the 7th ACM International Conference on Web Search and Data Mining. New York, USA: ACM Press, 2018: 459-467.
|
3 |
PEROZZI B, AL-RFOU R, SKIENA S. DeepWalk: online learning of social representations[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2014: 701-710.
|
4 |
GROVER A, LESKOVEC J. node2vec: scalable feature learning for networks[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2016: 855-864.
|
5 |
WU C Y, AHMED A, BEUTEL A, et al. Recurrent recommender networks[C]//Proceedings of the 10th ACM International Conference on Web Search and Data Mining. New York, USA: ACM Press, 2017: 495-503.
|
6 |
|
7 |
RENDLE S, FREUDENTHALER C, SCHMIDT-THIEME L. Factorizing personalized Markov chains for next-basket recommendation[C]//Proceedings of the 19th International Conference on World Wide Web. New York, USA: ACM Press, 2010: 811-820.
|
8 |
KANG W C, MCAULEY J. Self-attentive sequential recommendation[C]//Proceedings of the IEEE International Conference on Data Mining (ICDM). Washington D.C., USA: IEEE Press, 2018: 197-206.
|
9 |
FAN Z W, LIU Z W, WANG S, et al. Modeling sequences as distributions with uncertainty for sequential recommendation[C]//Proceedings of the 30th ACM International Conference on Information 38 Knowledge Management. New York, USA: ACM Press, 2021: 3019-3023.
|
10 |
CAI R Q, WU J B, SAN A D, et al. Category-aware collaborative sequential recommendation[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM Press, 2021: 388-397.
|
11 |
DING Y J , MA Y S , WONG W K , et al. Modeling instant user intent and content-level transition for sequential fashion recommendation. IEEE Transactions on Multimedia, 2022, 24, 2687- 2700.
doi: 10.1109/TMM.2021.3088281
|
12 |
|
13 |
ZHU Y C, CHEN Z Z. Mutually-regularized dual collaborative variational auto-encoder for recommendation systems[C]//Proceedings of the ACM Web Conference 2022. New York, USA: ACM Press, 2022: 2379-2387.
|
14 |
|
15 |
CHANG X F, LIU X Q, WEN J F, et al. Continuous-time dynamic graph learning via neural interaction processes[C]//Proceedings of the 29th ACM International Conference on Information & Knowledge Management. New York, USA: ACM Press, 2020: 145-154.
|
16 |
TIAN S, XIONG T, SHI L L. Streaming dynamic graph neural networks for continuous-time temporal graph modeling[C]//Proceedings of the IEEE International Conference on Data Mining (ICDM). Washington D.C., USA: IEEE Press, 2021: 1361-1366.
|
17 |
ZHANG Y, XIONG Y, LI D S, et al. CoPE: modeling continuous propagation and evolution on interaction graph[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management. New York, USA: ACM Press, 2021: 2627-2636.
|
18 |
COVINGTON P, ADAMS J, SARGIN E. Deep neural networks for YouTube recommendations[C]//Proceedings of the 10th ACM Conference on Recommender Systems. New York, USA: ACM Press, 2016: 191-198.
|
19 |
YING R, HE R N, CHEN K F, et al. Graph convolutional neural networks for web-scale recommender systems[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York, USA: ACM Press, 2018: 974-983.
|
20 |
张宝鑫, 杨丹, 聂铁铮, 等. 基于自监督的多视角图协同过滤推荐方法. 计算机工程, 2024, 50 (5): 100- 110.
doi: 10.19678/j.issn.1000-3428.0067851
|
|
ZHANG B X , YANG D , NIE T Z , et al. Recommendation method based on self-supervised multi-view graph collaborative filtering. Computer Engineering, 2024, 50 (5): 100- 110.
doi: 10.19678/j.issn.1000-3428.0067851
|
21 |
宋玉龙, 马文明, 刘彤彤. 融合用户信任度的概率矩阵分解群组推荐算法. 计算机工程, 2022, 48 (1): 105- 111.
doi: 10.19678/j.issn.1000-3428.0059526
|
|
SONG Y L , MA W M , LIU T T . Group recommendation algorithm incorporating user trust with probability matrix factorization. Computer Engineering, 2022, 48 (1): 105- 111.
doi: 10.19678/j.issn.1000-3428.0059526
|
22 |
沈学利, 马玉营, 梁振兴. 融合复杂先验与注意力机制的变分自动编码器. 计算机工程, 2022, 48 (11): 55- 61.
doi: 10.19678/j.issn.1000-3428.0063401
|
|
SHEN X L , MA Y Y , LIANG Z X . Variational auto-encoder combining complex priori and attention mechanism. Computer Engineering, 2022, 48 (11): 55- 61.
doi: 10.19678/j.issn.1000-3428.0063401
|
23 |
KOREN Y , BELL R , VOLINSKY C . Matrix factorization techniques for recommender systems. Computer, 2009, 42 (8): 30- 37.
|
24 |
RENDLE S, FREUDENTHALER C, GANTNER Z, et al. BPR: Bayesian personalized ranking from implicit feedback[EB/OL]. [2024-01-05]. https://arxiv.org/abs/1205.2618.
|
25 |
HE X N, LIAO L Z, ZHANG H W, et al. Neural collaborative filtering[C]//Proceedings of the 26th International Conference on World Wide Web. New York, USA: ACM Press, 2017: 173-182.
|
26 |
TAY Y, ANH TUAN L, HUI S C. Latent relational metric learning via memory-based attention for collaborative ranking[C]//Proceedings of the 2018 World Wide Web Conference. New York, USA: ACM Press, 2018: 729-739.
|
27 |
KABBUR S, NING X, KARYPIS G. FISM: factored item similarity models for top-N recommender systems[C]//Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2013: 659-667.
|
28 |
KOREN Y. Factorization meets the neighborhood: a multifaceted collaborative filtering model[C]//Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2008: 426-434.
|
29 |
CHEN J Y, ZHANG H W, HE X N, et al. Attentive collaborative filtering: multimedia recommendation with item- and component-level attention[C]//Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM Press, 2017: 335-344.
|
30 |
HE X N , HE Z K , SONG J K , et al. NAIS: neural attentive item similarity model for recommendation. IEEE Transactions on Knowledge and Data Engineering, 2018, 30 (12): 2354- 2366.
doi: 10.1109/TKDE.2018.2831682
|
31 |
HU Y F, KOREN Y, VOLINSKY C. Collaborative filtering for implicit feedback datasets[C]//Proceedings of the 8th IEEE International Conference on Data Mining. Washington D.C., USA: IEEE Press, 2008: 263-272.
|
32 |
SEDHAIN S, MENON A K, SANNER S, et al. AutoRec: autoencoders meet collaborative filtering[C]//Proceedings of the 24th International Conference on World Wide Web. New York, USA: ACM Press, 2015: 111-112.
|
33 |
LIANG D W, ALTOSAAR J, CHARLIN L, et al. Factorization meets the item embedding: regularizing matrix factorization with item co-occurrence[C]//Proceedings of the 10th ACM Conference on Recommender Systems. New York, USA: ACM Press, 2016: 59-66.
|
34 |
HE X N, DENG K, WANG X, et al. LightGCN: simplifying and powering graph convolution network for recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM Press, 2020: 639-648.
|
35 |
LIU J , LI D , GU H , et al. Parameter-free dynamic graph embedding for link prediction. Advances in Neural Information Processing Systems, 2022, 35, 27623- 27635.
|
36 |
LIU S J, LIU J H, GU H S, et al. AutoSeqRec: autoencoder for efficient sequential recommendation[C]//Proceedings of the 32nd ACM International Conference on Information and Knowledge Management. New York, USA: ACM Press, 2023: 1493-1502.
|
37 |
ZHU T Y, SHI Y S, ZHANG Y, et al. Collaboration and transition: distilling item transitions into multi-query self-attention for sequential recommendation[C]//Proceedings of the 17th ACM International Conference on Web Search and Data Mining. New York, USA: ACM Press, 2024: 1003-1011.
|