1 |
YUAN Y, WANG G R, WANG H X, et al. Efficient subgraph search over large uncertain graphs. Proceedings of the VLDB Endowment, 2011, 4(11): 876- 886.
doi: 10.14778/3402707.3402726
|
2 |
ZHANG M, CHEN Y. Link prediction based on graph neural networks[C]//Proceedings of Annual Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2018: 5171-5181.
|
3 |
YUAN Y, CHEN L, WANG G R. Efficiently answering probability threshold-based shortest path queries over uncertain graphs[C]//Proceedings of the 15th International Conference on Database Systems for Advanced Applications. Berlin, Germany: Springer, 2010: 155-170.
|
4 |
YUAN Y, WANG G R, CHEN L, et al. Efficient subgraph similarity search on large probabilistic graph databases. Proceedings of the VLDB Endowment, 2012, 5(9): 800- 811.
doi: 10.14778/2311906.2311908
|
5 |
SHORTEN C, KHOSHGOFTAAR T M. A survey on image data augmentation for deep learning. Journal of Big Data, 2019, 6(1): 60.
doi: 10.1186/s40537-019-0197-0
|
6 |
KAFLE K, YOUSEFHUSSIEN M, KANAN C. Data augmentation for visual question answering[C]//Proceedings of the 10th International Conference on Natural Language Generation. Stroudsburg, USA: ACL, 2017: 198-202.
|
7 |
ZHANG X, LECUN Y. Character-level convolutional networks for text classification[C]//Proceedings of Annual Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2015: 1-9.
|
8 |
吴量, 张方方, 程超, 等. 基于双层数据增强的监督对比学习文本分类模型. 吉林大学学报(理学版), 2024, 62(1): 144- 151.
|
|
WU L, ZHANG F F, CHENG C, et al. A text classification model of supervised contrastive learning based on double-layer data augmentation. Journal of Jilin University (Science Edition), 2024, 62(1): 144- 151.
|
9 |
CHEN D L, LIN Y K, LI W, et al. Measuring and relieving the over-smoothing problem for graph neural networks from the topological view. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(4): 3438- 3445.
doi: 10.1609/aaai.v34i04.5747
|
10 |
ZHAO T, LIU Y, NEVES L, et al. Data augmentation for graph neural networks. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(12): 11015- 11023.
doi: 10.1609/aaai.v35i12.17315
|
11 |
LIU S T, YING R, DONG H, et al. Local augmentation for graph neural networks[C]//Proceedings of the 39th International Conference on Machine Learning. Baltimore, USA: PMLR Press, 2022: 14054-14072.
|
12 |
ZHU D H, DAI X Y, CHEN J J. Pre-train and learn: preserving global information for graph neural networks. Journal of Computer Science and Technology, 2021, 36(6): 1420- 1430.
doi: 10.1007/s11390-020-0142-x
|
13 |
RONG Y, HUANG W, XU T, et al. DropEdge: towards deep graph convolutional networks on node classification[C]//Proceedings of International Conference on Learning Representations. Addis Ababa, Ethiopia: ICLR Press, 2020: 1-17.
|
14 |
BRUNA J, ZAREMBA W, SZLAM A, et al. Spectral networks and locally connected networks on graphs[C]//Proceedings of International Conference on Learning Representations. Banff, Canada: ICLR Press, 2014: 1015-11023.
|
15 |
肖国庆, 李雪琪, 陈玥丹, 等. 大规模图神经网络研究综述. 计算机学报, 2024, 47(1): 148- 171.
|
|
XIAO G Q, LI X Q, CHEN Y D, et al. A survey of large-scale graph neural networks. Chinese Journal of Computers, 2024, 47(1): 148- 171.
|
16 |
KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[C]//Proceedings of International Conference on Learning Representations. Toulon, France: ICLR Press, 2017: 1-14.
|
17 |
CHEN M, WEI Z W. Simple and deep graph convolutional networks[C]//Proceedings of the 37th International Conference on Machine Learning. [S. l. ]: ICML Press, 2020: 1725-1735.
|
18 |
VELICKOVIC P, CUCURULL G, CASANOVA A. Graph attention networks[C]//Proceedings of International Conference on Learning Representations. Vancouver, Canada: ICLR Press, 2018: 1-12.
|
19 |
缪昊洋, 高谭芮, 汤影. 基于生成模型的联邦学习隐私保护算法. 电子设计工程, 2023, 31(24): 81-84, 89.
|
|
MIAO H Y, GAO T R, TANG Y. Federated learning privacy protection algorithm based on generative model. Electronic Design Engineering, 2023, 31(24): 81-84, 89.
|
20 |
杨盛春, 贾林祥. 神经网络内监督学习和无监督学习之比较. 徐州建筑职业技术学院学报, 2006, 6(3): 55- 58.
|
|
YANG S C, JIA L X. Comparison between supervised learning and unsupervised learning in neural networks. Journal of Xuzhou Institute of Architectural Technology, 2006, 6(3): 55- 58.
|
21 |
|
22 |
SALHA G, HENNEQUIN R, VAZIRGIANNIS M. Keep it simple: graph autoencoders without graph convolutional networks[EB/OL]. [2024-09-10]. https://arxiv.org/abs/2006.03545.
|
23 |
XU D, RUAN C W, MOTWANI K, et al. Generative graph convolutional network for growing graphs[C]//Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Washington D. C., USA: IEEE Press, 2019: 3167-3171.
|
24 |
YANG C, ZHUANG P, SHI W, et al. Conditional structure generation through graph variational generative adversarial nets[C]//Proceedings of Annual Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2019: 1338-1349.
|
25 |
SIMONOVSKY M, KOMODAKIS N. GraphVAE: towards generation of small graphs using variational autoencoders[C]//Proceedings of International Conference on Advanced Nanomaterials and Nanodevices. Berlin, Germany: Springer, 2018: 412-422.
|
26 |
LIU Q, ALLAMANI M, BROCKSCHMIDT M, et al. Constrained graph variational autoencoders for molecule design[C]//Proceedings of Annual Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2018: 7806-7815.
|
27 |
|
28 |
HAVELIWALA T H. Topic-sensitive PageRank: a context-sensitive ranking algorithm for web search. IEEE Transactions on Knowledge and Data Engineering, 2003, 15(4): 784- 796.
doi: 10.1109/TKDE.2003.1208999
|
29 |
JEH G, WIDOM J, JEH G, et al. Scaling personalized web search[C]//Proceedings of the 12th International Conference on World Wide Web. New York, USA: ACM Press, 2003: 271-279.
|
30 |
BAHMANI B, CHOWDHURY A, GOEL A. Fast incremental and personalized PageRank. VLDB Endowment, 2010, 4(3): 173- 184.
doi: 10.14778/1929861.1929864
|
31 |
WEI Z W, HE X D, XIAO X K, et al. TopPPR: top-k personalized PageRank queries with precision guarantees on large graphs[C]//Proceedings of International Conference on Management of Data. New York, USA: ACM Press, 2018: 2748-2758.
|
32 |
CHIEN E, PENG J H, LI P, et al. Adaptive universal generalized PageRank graph neural network[C]//Proceedings of International Conference on Learning Representations. [S. l. ]: ICLR Press, 2021: 1-24.
|
33 |
KIPF T N, WELLING M. Variational graph autoencoders[C]//Proceedings of the 30th Annual Conference on Neural Information Processing Systems. Barcelona, Spain: NIPS Press, 2016: 1-3.
|
34 |
SEN P, NAMATA G, BILGIC M, et al. Collective classification in network data. AI Magazine, 2008, 29(3): 93- 106.
doi: 10.1609/aimag.v29i3.2157
|
35 |
SOHN K, LEE H, YAN X. Learning structured output representation using deep conditional generative models[C]//Proceedings of Annual Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2015: 3483-3491.
|
36 |
DEFFERRARD M, BRESSON X, VANDERGHEYNST P. Convolutional neural networks on graphs with fast localized spectral filtering[C]//Proceedings of Annual Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2016: 3837-3845.
|
37 |
KLICPERA J, BOJCHEVSKI A, GÜNNEMANN S. Predict then propagate: graph neural networks meet personalized pagerank[C]//Proceedings of International Conference on Learning Representation. New Orleans, USA: ICLR Press, 2019: 1-15.
|
38 |
WANG H, ZHOU C, CHEN X, et al. Graph stochastic neural networks for semi-supervised learning[C]//Proceedings of Annual Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2020: 1-10.
|
39 |
FENG W, ZHANG J, DONG Y, et al. Graph random neural network for semi-supervised learning on graphs[C]//Proceedings of Annual Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2020: 1-12.
|
40 |
WIJESINGHE A, WANG Q. A new perspective on "how graph neural networks go beyond weisfeiler-lehman?"[C]//Proceedings of International Conference on Learning Representations. [S. l. ]: ICLR Press, 2022: 1-23.
|
41 |
YANG Z, COHEN W, SALAKHUDINOV R. Revisiting semi-supervised learning with graph embeddings[C]//Proceedings of International Conference on Machine Learning. New York, USA: ICML Press, 2016: 40-48.
|