1 |
GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks. Communications of the ACM, 2020, 63(11): 139- 144.
doi: 10.1145/3422622
|
2 |
|
3 |
|
4 |
耿鹏志, 樊红兴, 张翌阳, 等. 基于篡改伪影的深度伪造检测方法. 计算机工程, 2021, 47(12): 156- 162.
URL
|
|
GENG P Z, FAN H X, ZHANG Y Y, et al. Deepfake detection method based on tampering artifacts. Computer Engineering, 2021, 47(12): 156- 162.
URL
|
5 |
李柯, 李邵梅, 吉立新, 等. 基于自注意力胶囊网络的伪造人脸检测方法. 计算机工程, 2022, 48(2): 194-200, 206.
URL
|
|
LI K, LI S M, JI L X, et al. Method of face forgery detection based on self-attention capsule network. Computer Engineering, 2022, 48(2): 194-200, 206.
URL
|
6 |
FAN H Q, XIONG B, MANGALAM K, et al. Multiscale Vision Transformers[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2021: 6824-6835.
|
7 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 770-778.
|
8 |
MONTSERRAT D M, HAO H X, YARLAGADDA S K, et al. Deepfakes detection with automatic face weighting[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Washington D. C., USA: IEEE Press, 2020: 668-669.
|
9 |
SUN Z, HAN Y, HUA Z, et al. Improving the efficiency and robustness of deepfakes detection through precise geometric features[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 3609-3618.
|
10 |
|
11 |
CHUGH K, GUPTA P, DHALL A, et al. Not made for each other- audio-visual dissonance-based deepfake detection and localization[C]//Proceedings of the 28th ACM International Conference on Multimedia. New York, USA: ACM Press, 2020: 439-447.
|
12 |
KNAFO G, FRIED O. FakeOut: leveraging out-of-domain self-supervision for multi-modal video deepfake detection[EB/OL]. [2023-05-05]. https://arxiv.org/abs/2212.00773.
|
13 |
|
14 |
BONETTINI N, CANNAS E D, MANDELLI S, et al. Video face manipulation detection through ensemble of CNNs[C]//Proceedings of the 25th International Conference on Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 5012-5019.
|
15 |
WANG G J, JIANG Q, JIN X, et al. FFR_FD: effective and fast detection of DeepFakes via feature point defects. Information Sciences: an International Journal, 2022, 596(C): 472- 488.
|
16 |
ZHAO H Q, WEI T Y, ZHOU W B, et al. Multi-attentional deepfake detection[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 2185-2194.
|
17 |
|
18 |
|
19 |
HEO Y J, CHOI Y J, LEE Y W, et al. Deepfake detection scheme based on Vision Transformer and distillation[EB/OL]. [2023-05-05]. https://arxiv.org/abs/2104.01353.
|
20 |
ZHANG K P, ZHANG Z P, LI Z F, et al. Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Processing Letters, 2016, 23(10): 1499- 1503.
doi: 10.1109/LSP.2016.2603342
|
21 |
LI Y H, WU C Y, FAN H Q, et al. MViTv2: improved multiscale Vision Transformers for classification and detection[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2022: 4804-4814.
|
22 |
|
23 |
CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 1251-1258.
|
24 |
|
25 |
CHEN C F R, FAN Q F, PANDA R. CrossViT: cross-attention multi-scale Vision Transformer for image classification[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2021: 357-366.
|
26 |
ZHAO Z X, BAI H W, ZHANG J S, et al. CDDFuse: correlation-driven dual-branch feature decomposition for multi-modality image fusion[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2023: 5906-5916.
|
27 |
ZHU L, WANG X J, KE Z H, et al. BiFormer: Vision Transformer with Bi-level routing attention[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2023: 10323-10333.
|
28 |
|
29 |
YANG X, LI Y Z, LÜ S W. Exposing deep fakes using inconsistent head poses[C]//Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing. Washington D. C., USA: IEEE Press, 2019: 8261-8265.
|
30 |
|
31 |
ROSSLER A, COZZOLINO D, VERDOLIVA L, et al. FaceForensics++: learning to detect manipulated facial images[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2019: 1-11.
|
32 |
ZI B J, CHANG M H, CHEN J J, et al. WildDeepfake: a challenging real-world dataset for deepfake detection[C]//Proceedings of the 28th ACM International Conference on Multimedia. New York, USA: ACM Press, 2020: 2382-2390.
|
33 |
|
34 |
LI Y Z, YANG X, SUN P, et al. Celeb-DF: a large-scale challenging dataset for DeepFake forensics[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 3207-3216.
|
35 |
HU J, LIAO X, WANG W, et al. Detecting compressed deepfake videos in social networks using frame-temporality two-stream convolutional network. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(3): 1089- 1102.
doi: 10.1109/TCSVT.2021.3074259
|
36 |
COCCOMINI D A, MESSINA N, GENNARO C, et al. Combining EfficientNet and Vision Transformers for video deepfake detection[EB/OL]. [2023-05-05]. https://arxiv.org/abs/2107.02612.
|