| 1 |
EWEES A A , MOSTAFA R R , GHONIEM R M , et al. Improved seagull optimization algorithm using Lévy flight and mutation operator for feature selection. Neural Computing and Applications, 2022, 34 (10): 7437- 7472.
doi: 10.1007/s00521-021-06751-8
|
| 2 |
HU G , DU B , WANG X F , et al. An enhanced black widow optimization algorithm for feature selection. Knowledge-Based Systems, 2022, 235, 107638.
doi: 10.1016/j.knosys.2021.107638
|
| 3 |
EL-KENAWY E S M , MIRJALILI S , ALASSERY F , et al. Novel meta-heuristic algorithm for feature selection, unconstrained functions and engineering problems. IEEE Access, 2022, 10, 40536- 40555.
doi: 10.1109/ACCESS.2022.3166901
|
| 4 |
HAMED A , NASSAR H . Efficient feature selection for inconsistent heterogeneous information systems based on a grey wolf optimizer and rough set theory. Soft Computing, 2021, 25 (24): 15115- 15130.
doi: 10.1007/s00500-021-06375-z
|
| 5 |
PAWLAK Z . Rough sets. International Journal of Computer & Information Sciences, 1982, 11 (5): 341- 356.
|
| 6 |
SUN L , WANG T X , DING W P , et al. Feature selection using fisher score and multilabel neighborhood rough sets for multilabel classification. Information Sciences, 2021, 578, 887- 912.
doi: 10.1016/j.ins.2021.08.032
|
| 7 |
LIN T Y. Neighborhood systems and approximation in relational databases and knowledge bases[C]//Proceedings of the 4th International Symposium on Methodologies of Intelligent Systems. New York, USA: ACM Press, 1988: 75-86.
|
| 8 |
胡清华, 于达仁, 谢宗霞. 基于邻域粒化和粗糙逼近的数值属性约简. 软件学报, 2008, 19 (3): 640- 649.
|
|
HU Q H , YU D R , XIE Z X . Numerical attribute approximation based on neighborhood granularity and rough approximation. Journal of Software, 2008, 19 (3): 640- 649.
|
| 9 |
WANG C Z , SHI Y P , FAN X D , et al. Attribute reduction based on k-nearest neighborhood rough sets. International Journal of Approximate Reasoning, 2019, 106, 18- 31.
doi: 10.1016/j.ijar.2018.12.013
|
| 10 |
YANG X S. Firefly algorithms for multimodal optimization[C]//Proceedings of International Symposium on Stochastic Algorithms. Berlin, Germany: Springer, 2009: 169-178.
|
| 11 |
KENNEDY J, EBERHART R. Particle swarm optimization[C]//Proceedings of International Conference on Neural Networks. Perth, Australia: IEEE Press, 1995: 1942-1948.
|
| 12 |
HOLLAND J H . Genetic algorithms. Scientific American, 1992, 267 (1): 66- 72.
doi: 10.1038/scientificamerican0792-66
|
| 13 |
WEI K D , KHISHE M , MOHAMMADI M . Dynamic levy flight chimp optimization. Knowledge-Based Systems, 2022, 235, 107625.
doi: 10.1016/j.knosys.2021.107625
|
| 14 |
MAJUMDAR P , BHATTACHARYA D , MITRA S , et al. An improved binary grey wolf optimizer for constrained engineering design problems. Expert Systems, 2024, 41, e13458.
doi: 10.1111/exsy.13458
|
| 15 |
赵洁, 叶文浩, 梁周扬, 等. 基于不一致近邻的模糊粗糙集特征选择. 计算机工程, 2024, 50 (1): 110- 119.
doi: 10.19678/j.issn.1000-3428.0066458
|
|
ZHAO J , YE W H , LIANG Z Y , et al. Fuzzy rough set feature selection based on inconsistent nearest neighbors. Computer Engineering, 2024, 50 (1): 110- 119.
doi: 10.19678/j.issn.1000-3428.0066458
|
| 16 |
孙雅芝, 江峰, 杨志勇. 基于粒度粗糙熵与改进蜂群算法的特征选择. 计算机系统应用, 2023, 32 (6): 121- 129.
|
|
SUN Y Z , JIANG F , YANG Z Y . Feature selection based on granularity rough entropy with improved swarm algorithm. Computer System Applications, 2023, 32 (6): 121- 129.
|
| 17 |
ANTIPOV D, BUZDALOV M, DOERR B. Fast mutation in crossover-based algorithms[C]//Proceedings of the 2020 Genetic and Evolutionary Computation Conference. New York, USA: ACM Press, 2020: 1268-1276.
|
| 18 |
WANG H B , WANG J , ZHEN X X , et al. Oriented multi-mutation strategy in a many-objective evolutionary algorithm. Information Sciences, 2019, 478, 391- 407.
doi: 10.1016/j.ins.2018.11.042
|
| 19 |
ZHANG X Y, FANG J, ZOU J F, et al. Coordinated allocation of multi-station fusion substation based on improved genetic algorithm[C]//Proceedings of the IEEE 6th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). Beijing, China: IEEE Press, 2022: 1211-1216.
|
| 20 |
SHI D Y , LAM B , SHEN X Y , et al. Multichannel two-gradient direction filtered reference least mean square algorithm for output-constrained multichannel active noise control. Signal Processing, 2023, 207, 108938.
doi: 10.1016/j.sigpro.2023.108938
|
| 21 |
LI D D , WANG L , CAI J C , et al. Research on terminal distance index-based multi-step ant colony optimization for mobile robot path planning. IEEE Transactions on Automation Science and Engineering, 2023, 20 (4): 2321- 2337.
doi: 10.1109/TASE.2022.3212428
|
| 22 |
|
| 23 |
HEIDARI A A , MIRJALILI S , FARIS H , et al. Harris Hawks optimization: algorithm and applications. Future Generation Computer Systems, 2019, 97, 849- 872.
doi: 10.1016/j.future.2019.02.028
|
| 24 |
YANG X S. Flower pollination algorithm for global optimization[M]//DURAND-LOSE J, JONOSKA N. Unconventional computation and natural computation. Berlin, Germany: Springer, 2012: 240-249.
|
| 25 |
MIRJALILI S , GANDOMI A H , MIRJALILI S Z , et al. Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Advances in Engineering Software, 2017, 114, 163- 191.
doi: 10.1016/j.advengsoft.2017.07.002
|
| 26 |
MIRJALILI S . SCA: a Sine Cosine algorithm for solving optimization problems. Knowledge-Based Systems, 2016, 96, 120- 133.
doi: 10.1016/j.knosys.2015.12.022
|
| 27 |
彭鹏, 倪志伟, 朱旭辉, 等. 基于改进二元萤火虫群优化算法和邻域粗糙集的属性约简方法. 模式识别与人工智能, 2020, 33 (2): 11.
|
|
PENG P , NI Z W , ZHU X H , et al. Attribute approximation method based on improved binary firefly swarm optimization algorithm and neighborhood rough set. Pattern Recognition and Artificial Intelligence, 2020, 33 (2): 11.
|
| 28 |
季雨瑄, 叶军, 杨震宇, 等. 一种人工蜂群算法优化的邻域粗糙集特征选择方法. 郑州大学学报(理学版), 2023, 55 (6): 55- 62.
|
|
JI Y X , YE J , YANG Z Y , et al. A neighborhood rough set feature selection method optimized by an artificial bee colony algorithm. Journal of Zhengzhou University (Science Edition), 2023, 55 (6): 55- 62.
|