| 1 |
MIN Y Z , XIAO B Y , DANG J W , et al. Real time detection system for rail surface defects based on machine vision. EURASIP Journal on Image and Video Processing, 2018, 2018 (1): 3.
doi: 10.1186/s13640-017-0241-y
|
| 2 |
WANG T , YANG F , TSUI K L . Real-time detection of railway track component via one-stage deep learning networks. Sensors, 2020, 20 (15): e4325.
doi: 10.3390/s20154325
|
| 3 |
GUO F , QIAN Y , WU Y P , et al. Automatic railroad track components inspection using real-time instance segmentation. Computer-Aided Civil and Infrastructure Engineering, 2021, 36 (3): 362- 377.
doi: 10.1111/mice.12625
|
| 4 |
LI J , QIU X Y , WEI Y F , et al. Online rail fastener detection based on YOLO network. Computers, Materials Continua, 2022, 72 (3): 5955- 5967.
doi: 10.32604/cmc.2022.027947
|
| 5 |
WU Y P , CHEN P , QIN Y , et al. Automatic railroad track components inspection using hybrid deep learning framework. IEEE Transactions on Instrumentation and Measurement, 2023, 72, 23- 31.
|
| 6 |
HSIEH C C , HSU T Y , HUANG W H . An online rail track fastener classification system based on YOLO models. Sensors, 2022, 22 (24): e9970.
doi: 10.3390/s22249970
|
| 7 |
杜淼杰. 基于机器视觉的钢轨表面裂纹伤损检测研究[D]. 南昌: 华东交通大学, 2022.
|
|
DU M J. Research on detection of rail surface crack damage based on machine vision[D]. Nanchang: East China Jiaotong University, 2022. (in Chinese)
|
| 8 |
SUN J N , GU Q , ZHENG T , et al. Joint optimization of computation offloading and task scheduling in vehicular edge computing networks. IEEE Access, 2020, 8, 10466- 10477.
doi: 10.1109/ACCESS.2020.2965620
|
| 9 |
YADAV R , ZHANG W Z , KAIWARTYA O , et al. Energy-latency tradeoff for dynamic computation offloading in vehicular fog computing. IEEE Transactions on Vehicular Technology, 2020, 69 (12): 14198- 14211.
doi: 10.1109/TVT.2020.3040596
|
| 10 |
TANG L J , TANG B , ZHANG L , et al. Joint optimization of network selection and task offloading for vehicular edge computing. Journal of Cloud Computing, 2021, 10 (1): 23.
doi: 10.1186/s13677-021-00240-y
|
| 11 |
DAI Y Y , XU D , MAHARJAN S , et al. Joint load balancing and offloading in vehicular edge computing and networks. IEEE Internet of Things Journal, 2020, 6 (3): 4377- 4387.
|
| 12 |
HUY HOANG V , HO T M , LE L B . Mobility-aware computation offloading in MEC-based vehicular wireless networks. IEEE Communications Letters, 2020, 24 (2): 466- 469.
doi: 10.1109/LCOMM.2019.2956514
|
| 13 |
TAN K G , FENG L , DAN G , et al. Decentralized convex optimization for joint task offloading and resource allocation of vehicular edge computing systems. IEEE Transactions on Vehicular Technology, 2022, 71 (12): 13226- 13241.
doi: 10.1109/TVT.2022.3197627
|
| 14 |
CONG Y L , XUE K , WANG C , et al. Latency-energy joint optimization for task offloading and resource allocation in MEC-assisted vehicular networks. IEEE Transactions on Vehicular Technology, 2023, 72 (12): 16369- 16381.
doi: 10.1109/TVT.2023.3289236
|
| 15 |
GAO J , KUANG Z F , GAO J , et al. Joint offloading scheduling and resource allocation in vehicular edge computing: a two layer solution. IEEE Transactions on Vehicular Technology, 2023, 72 (3): 3999- 4009.
doi: 10.1109/TVT.2022.3220571
|
| 16 |
KHAYYAT M , ELGENDY I A , MUTHANNA A , et al. Advanced deep learning-based computational offloading for multilevel vehicular edge-cloud computing networks. IEEE Access, 2020, 8, 137052- 137062.
doi: 10.1109/ACCESS.2020.3011705
|
| 17 |
ZHAO J H , LI Q P , GONG Y , et al. Computation offloading and resource allocation for cloud assisted mobile edge computing in vehicular networks. IEEE Transactions on Vehicular Technology, 2019, 68 (8): 7944- 7956.
doi: 10.1109/TVT.2019.2917890
|
| 18 |
XUE Z , LIU C , LIAO C L , et al. Joint service caching and computation offloading scheme based on deep reinforcement learning in vehicular edge computing systems. IEEE Transactions on Vehicular Technology, 2023, 72 (5): 6709- 6722.
doi: 10.1109/TVT.2023.3234336
|
| 19 |
KE H C , WANG J , DENG L Y , et al. Deep reinforcement learning-based adaptive computation offloading for MEC in heterogeneous vehicular networks. IEEE Transactions on Vehicular Technology, 2020, 69 (7): 7916- 7929.
doi: 10.1109/TVT.2020.2993849
|
| 20 |
YIN C Y , ZHANG Y Y , DONG P , et al. Deep reinforcement learning-based joint task offloading and resource allocation in multipath transmission vehicular networks. Transactions on Emerging Telecommunications Technologies, 2024, 35 (1): e4930.
doi: 10.1002/ett.4930
|
| 21 |
GU B , ZHOU Z Y . Task offloading in vehicular mobile edge computing: a matching-theoretic framework. IEEE Vehicular Technology Magazine, 2019, 14 (3): 100- 106.
doi: 10.1109/MVT.2019.2902637
|
| 22 |
QIAO G H , LENG S P , ZHANG K , et al. Collaborative task offloading in vehicular edge multi-access networks. IEEE Communications Magazine, 2018, 56 (8): 48- 54.
doi: 10.1109/MCOM.2018.1701130
|
| 23 |
FENG J Y , LIU Z , WU C , et al. Mobile edge computing for the Internet of vehicles: offloading framework and job scheduling. IEEE Vehicular Technology Magazine, 2019, 14 (1): 28- 36.
doi: 10.1109/MVT.2018.2879647
|
| 24 |
HOU X W , REN Z Y , WANG J J , et al. Reliable computation offloading for edge-computing-enabled software-defined IoV. IEEE Internet of Things Journal, 2020, 7 (8): 7097- 7111.
doi: 10.1109/JIOT.2020.2982292
|
| 25 |
SHI J M , DU J , WANG J J , et al. Priority-aware task offloading in vehicular fog computing based on deep reinforcement learning. IEEE Transactions on Vehicular Technology, 2020, 69 (12): 16067- 16081.
doi: 10.1109/TVT.2020.3041929
|