| 1 |
何涛, 曹畅, 唐雄燕, 等. 面向6G需求的算力网络技术. 移动通信, 2020, 44(6): 131- 135.
|
|
HE T, CAO C, TANG X Y, et al. Research on computing power network technology for 6G requirements. Mobile Communications, 2020, 44(6): 131- 135.
|
| 2 |
段晓东, 姚惠娟, 付月霞, 等. 面向算网一体化演进的算力网络技术. 电信科学, 2021, 37(10): 76- 85.
|
|
DUAN X D, YAO H J, FU Y X, et al. Computing force network technologies for computing and network integration evolution. Telecommunications Science, 2021, 37(10): 76- 85.
|
| 3 |
贾庆民, 丁瑞, 刘辉, 等. 算力网研究进展综述. 网络与信息安全学报, 2021, 7(5): 1- 12.
|
|
JIA Q M, DING R, LIU H, et al. Survey on research progress for compute first networking. Chinese Journal of Network and Information Security, 2021, 7(5): 1- 12.
|
| 4 |
邓平科, 张同须, 施南翔, 等. 星算网络-空天地一体化算力融合网络新发展. 电信科学, 2022, 38(6): 71- 81.
|
|
DENG P K, ZHANG T X, SHI N X, et al. Computing satellite networks-the novel development of computing-empowered space-air-ground integrated networks. Telecommunications Science, 2022, 38(6): 71- 81.
|
| 5 |
王鹏, 张佳鑫, 张兴, 等. 低轨卫星智能多接入边缘计算网络: 需求、架构、机遇与挑战. 移动通信, 2021, 45(5): 35- 46.
|
|
WANG P, ZHANG J X, ZHANG X, et al. Low earth orbit satellite intelligent multi-access edge computing networks: Requirements, architecture, opportunities and challenges. Mobile Communications, 2021, 45(5): 35- 46.
|
| 6 |
ZHU X M, JIANG C X. Integrated satellite-terrestrial networks toward 6G: architectures, applications, and challenges. IEEE Internet of Things Journal, 2021, 9(1): 437- 461.
|
| 7 |
BRIK B, FRANGOUDIS P A, KSENTINI A. Service-oriented MEC applications placement in a federated edge cloud architecture[C]//Proceedings of the IEEE International Conference on Communications. Washington D. C., USA: IEEE Press, 2020: 1-6.
|
| 8 |
MEHRABI M, YOU D, LATZKO V, et al. Device-enhanced MEC: multi-access edge computing aided by end device computation and caching: a survey. IEEE Access, 2019, 7, 166079- 166108.
doi: 10.1109/ACCESS.2019.2953172
|
| 9 |
HAO Y X, CHEN M, HU L, et al. Energy efficient task caching and offloading for mobile edge computing. IEEE Access, 2018, 6, 11365- 11373.
doi: 10.1109/ACCESS.2018.2805798
|
| 10 |
王奎宇, 宋晓勤, 缪娟娟, 等. 基于SDN的高性能QoS保障低轨道卫星星间路由算法. 计算机工程, 2022, 48(5): 185-190, 199.
doi: 10.19678/j.issn.1000-3428.0061298
|
|
WANG K Y, SONG X Q, MIAO J J, et al. SDN-based high-performance and QoS guaranteed inter-satellite routing algorithm for low-earth orbit satellites. Computer Engineering, 2022, 48(5): 185-190, 199.
doi: 10.19678/j.issn.1000-3428.0061298
|
| 11 |
LYU Y F, LIU Z, FAN R F, et al. Optimal computation offloading in collaborative LEO-IoT enabled MEC: a multiagent deep reinforcement learning approach. IEEE Transactions on Green Communications and Networking, 2023, 7(2): 996- 1011.
doi: 10.1109/TGCN.2022.3186792
|
| 12 |
WANG C M, YU F R, LIANG C C, et al. Joint computation offloading and interference management in wireless cellular networks with mobile edge computing. IEEE Transactions on Vehicular Technology, 2017, 66(8): 7432- 7445.
doi: 10.1109/TVT.2017.2672701
|
| 13 |
QIU C, YAO H P, YU F R, et al. Deep Q-learning aided networking, caching, and computing resources allocation in software-defined satellite-terrestrial networks. IEEE Transactions on Vehicular Technology, 2019, 68(6): 5871- 5883.
doi: 10.1109/TVT.2019.2907682
|
| 14 |
CHENG X W, LYU F, QUAN W, et al. Space/aerial-assisted computing offloading for IoT applications: a learning-based approach. IEEE Journal on Selected Areas in Communications, 2019, 37(5): 1117- 1129.
doi: 10.1109/JSAC.2019.2906789
|
| 15 |
CUI G F, LI X Y, XU L X, et al. Latency and energy optimization for MEC enhanced SAT-IoT networks. IEEE Access, 2020, 8, 55915- 55926.
doi: 10.1109/ACCESS.2020.2982356
|
| 16 |
WANG B, XIE J C, HUANG D Y, et al. A computation offloading strategy for LEO satellite mobile edge computing system[C]// Proceedings of the 14th International Conference on Communication Software and Networks. Washington D. C., USA: IEEE Press, 2022: 75-80.
|
| 17 |
DU H Y, WANG J C, NIYATO D, et al. AI-generated incentive mechanism and full-duplex semantic communications for information sharing. IEEE Journal on Selected Areas in Communications, 2023, 41(9): 2981- 2997.
doi: 10.1109/JSAC.2023.3287547
|
| 18 |
ZHOU D, SHENG M, WANG Y X, et al. Machine learning-based resource allocation in satellite networks supporting Internet of remote things. IEEE Transactions on Wireless Communications, 2021, 20(10): 6606- 6621.
doi: 10.1109/TWC.2021.3075289
|
| 19 |
YUAN Y X, LEI L, VU T X, et al. Adapting to dynamic LEO-B5G systems: meta-critic learning based efficient resource scheduling. IEEE Transactions on Wireless Communications, 2022, 21(11): 9582- 9595.
doi: 10.1109/TWC.2022.3178171
|
| 20 |
XIONG J, WANG Q, YANG Z, et al. Parametrized deep Q-networks learning: reinforcement learning with discrete-continuous hybrid action space[EB/OL]. [2024-05-10]. https://arxiv.org/abs/1810.06394.
|
| 21 |
DU H, ZHANG R, LIU Y, et al. Beyond deep reinforcement learning: a tutorial on generative diffusion models in network optimization[EB/OL]. [2024-05-10]. https://arxiv.org/pdf/2308.05384v1.
|
| 22 |
MASSON W, RANCHOD P, KONIDARIS G. Reinforcement learning with parameterized actions. Artificial Intelligence, 2016, 30(1): 1934- 1940.
|
| 23 |
DU H, LI Z, NIYATO D, et al. Generative AI-aided optimization for AI-generated content services in edge networks[EB/OL]. [2024-05-10]. https://arxiv.org/abs/2303.13052v1.
|
| 24 |
FAN Z, SU R, ZHANG W N, et al. Hybrid actor-critic reinforcement learning in parameterized action space[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence. Washington D. C., USA: IEEE Press, 2019: 2279-2285.
|
| 25 |
JIANG W, FENG D Q, SUN Y, et al. Joint computation offloading and resource allocation for D2D-assisted mobile edge computing. IEEE Transactions on Services Computing, 2022, 16(3): 1949- 1963.
|