[1] ALARCAO S M, FONSECA M J. Emotions recognition using EEG signals: a survey[J]. IEEE Transactions on Affective Computing, 2019, 10(3): 374-393. [2] LI J Y, HUA H Q, XU Z H, et al. Cross-subject EEG emotion recognition combined with connectivity features and meta-transfer learning[J]. Computers in Biology and Medicine, 2022, 145: 105519. [3] LI C, HOU Y M, SONG R C, et al. Multi-channel EEG-based emotion recognition in the presence of noisy labels[J]. Science China Information Sciences, 2022, 65(4): 140405. [4] 王夙喆, 张雪英, 陈晓玉, 等. 基于有效注意力和GAN结合的脑卒中EEG增强算法[J]. 计算机工程, 2024, 50(8): 336-344. WANG S Z, ZHANG X Y, CHEN X Y, et al. EEG enhancement algorithm based on combination of effective attention and GAN[J]. Computer Engineering, 2024, 50(8): 336-344. (in Chinese) [5] ALHAGRY S, FAHMY A A, EL-KHORIBI R A. Emotion recognition based on EEG using LSTM recurrent neural network[J]. International Journal of Advanced Computer Science and Applications, 2017, 8(10): 355-358. [6] NAJI M, FIROOZABADI M, AZADFALLAH P. Classification of music-induced emotions based on information fusion of forehead biosignals and electrocardiogram[J]. Cognitive Computation, 2014, 6(2): 241-252. [7] PETRANTONAKIS P C, HADJILEONTIADIS L J. Emotion recognition from EEG using higher order crossings[J]. IEEE Transactions on Information Technology in Biomedicine, 2010, 14(2): 186-197. [8] LI P, LIU H, SI Y, et al. EEG based emotion recognition by combining functional connectivity network and local activations[J]. IEEE Transactions on Biomedical Engineering, 2019, 66(10): 2869-2881. [9] LI X, ZHANG Y, TIWARI P, et al. EEG based emotion recognition: a tutorial and review[J]. ACM Computing Surveys, 2023, 55(4): 1-57. [10] ZHENG W L, ZHU J Y, LU B L. Identifying stable patterns over time for emotion recognition from EEG[J]. IEEE Transactions on Affective Computing, 2019, 10(3): 417-429. [11] ZHANG Y C, YAN G H, CHANG W W, et al. EEG-based multi-frequency band functional connectivity analysis and the application of spatio-temporal features in emotion recognition[J]. Biomedical Signal Processing and Control, 2023, 79: 104157. [12] WU X, ZHENG W L, LI Z Y, et al. Investigating EEG-based functional connectivity patterns for multimodal emotion recognition[J]. Journal of Neural Engineering, 2022, 19(1): 016012. [13] STAM C J, NOLTE G, DAFFERTSHOFER A. Phase lag index: assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources[J]. Human Brain Mapping, 2007, 28(11): 1178-1193. [14] BASELICE F, SORRISO A, RUCCO R, et al. Phase linearity measurement: a novel index for brain functional connectivity[J]. IEEE Transactions on Medical Imaging, 2019, 38(4): 873-882. [15] WU X, ZHENG W L, LU B L. Identifying functional brain connectivity patterns for EEG-based emotion recognition[C]//Proceedings of the 9th International IEEE/EMBS Conference on Neural Engineering (NER). San Francisco, USA: IEEE Press, 2019: 235-238. [16] GUPTA R, FALK T H. Relevance vector classifier decision fusion and EEG graph-theoretic features for automatic affective state characterization[J]. Neurocomputing, 2016, 174(1): 875-884. [17] CHEN C, LI Z, WAN F, et al. Fusing frequency-domain features and brain connectivity features for cross-subject emotion recognition[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-15. [18] GUO W H, LI Y X, LIU M X, et al. Functional connectivity-enhanced feature-grouped attention network for cross-subject EEG emotion recognition[J]. Knowledge-Based Systems, 2024, 283: 111199. [19] LIU X C, LI T, TANG C, et al. Emotion recognition and dynamic functional connectivity analysis based on EEG[J]. IEEE Access, 2019, 7: 143293-143302. [20] O’NEILL G C, TEWARIE P K, COLCLOUGH G L, et al. Measurement of dynamic task related functional networks using MEG[J]. NeuroImage, 2017, 146: 667-678. [21] RIZKALLAH J, ANNEN J, MODOLO J, et al. Decreased integration of EEG source-space networks in disorders of consciousness[J]. NeuroImage: Clinical, 2019, 23: 101841. [22] NOBUKAWA S, KIKUCHI M, TAKAHASHI T. Changes in functional connectivity dynamics with aging: a dynamical phase synchronization approach[J]. Neuroimage, 2019, 188: 357-368. [23] YANG J, CHEN S S, HUANGFU H R, et al. Dynamic functional connectivity of electroencephalogram in the resting state[J]. Acta Physica Sinica, 2015, 64(5): 058701. [24] XEFTERIS V R, TSANOUSA A, GEORGAKOPOULOU N, et al. Graph theoretical analysis of EEG functional connectivity patterns and fusion with physiological signals for emotion recognition[J]. Sensors, 2022, 22(21): 8198. [25] 李存波, 杨蕾, 陈昭瑾, 等. 基于脑电网络图特征的情绪识别研究[J]. 数据采集与处理, 2023, 38(4): 815-823. LI C B, YANG L, CHEN Z J, et al. Emotion recognition based on graph features extracted from EEG networks[J]. Journal of Data Acquisition and Processing, 2023, 38(4): 815-823. (in Chinese) [26] STOCKWELL R G, MANSINHA L, LOWE R P. Localization of the complex spectrum: the S transform[J]. IEEE Transactions on Signal Processing, 1996, 44(4): 998-1001. [27] KIRANYAZ S, INCE T, HAMILA R, et al. Convolutional neural networks for patient-specific ECG classification[C]//Proceedings of the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Washington D. C., USA: IEEE Press, 2015: 2608-2611. [28] KIRANYAZ S, AVCI O, ABDELJABER O, et al. 1D convolutional neural networks and applications: a survey[J]. Mechanical Systems and Signal Processing, 2021, 151: 107398. [29] LU L M, ZHANG C L, CAO K, et al. A multichannel CNN-GRU model for human activity recognition[J]. IEEE Access, 2022, 10: 66797-66810. [30] ZHONG M Y, YANG Q Y, LIU Y, et al. EEG emotion recognition based on TQWT-features and hybrid convolutional recurrent neural network[J]. Biomedical Signal Processing and Control, 2023, 79: 104211. [31] BAGHERZADEH S, SHAHABI M S, SHALBAF A. Detection of schizophrenia using hybrid of deep learning and brain effective connectivity image from electroencephalogram signal[J]. Computers in Biology and Medicine, 2022, 146: 105570. [32] DEY R, SALEM F M. Gate-variants of Gated Recurrent Unit (GRU) neural networks[C]//Proceedings of the IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS). Boston, USA: IEEE Press, 2017: 1597-1600. [33] CHUNG J, GULCEHRE C, CHO K, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[EB/OL].[2024-01-02]. https://arxiv.org/abs/1412.3555. [34] KOELSTRA S, MUHL C, SOLEYMANI M, et al. DEAP: a database for emotion analysis; using physiological signals[J]. IEEE Transactions on Affective Computing, 2012, 3(1): 18-31. [35] MERT A, AKAN A. Emotion recognition from EEG signals by using multivariate empirical mode decomposition[J]. Pattern Analysis and Applications, 2018, 21(1): 81-89. [36] SUTSKEVER I, MARTENS J, DAHL G, et al. On the importance of initialization and momentum in deep learning[C]//Proceedings of the 30th International Conference on Machine Learning. Atlanta , USA:[s. n.], 2013: 1-10. [37] YIN Y Q, ZHENG X W, HU B, et al. EEG emotion recognition using fusion model of graph convolutional neural networks and LSTM[J]. Applied Soft Computing, 2021, 100: 106954. [38] 廉小亲, 罗志宏, 蔡沫豪, 等. 基于卷积神经网络的脑电情绪识别方法[J]. 计算机仿真, 2022, 39(8): 268-274. LIAN X Q, LUO Z H, CAI M H, et al. EEG emotion recognition method based on convolutional neural network[J]. Computer Simulation, 2022, 39(8): 268-274. (in Chinese) [39] QIN C, LANLAN C, RUNQIANG J. Emotion recognition of EEG based on ensemble CapsNet[J]. Journal of Computer Engineering & Applications, 2022, 58(8): 175-184. [40] ZHENG W, PAN B. A spatiotemporal symmetrical transformer structure for EEG emotion recognition[J]. Biomedical Signal Processing and Control, 2024, 87: 105487. [41] MIAO M M, ZHENG L X, XU B G, et al. A multiple frequency bands parallel spatial—temporal 3D deep residual learning framework for EEG-based emotion recognition[J]. Biomedical Signal Processing and Control, 2023, 79: 104141. [42] XIAO G W, SHI M, YE M W, et al. 4D attention-based neural network for EEG emotion recognition[J]. Cognitive Neurodynamics, 2022, 16(4): 805-818. |