作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2025, Vol. 51 ›› Issue (7): 199-209. doi: 10.19678/j.issn.1000-3428.0069357

• 先进计算与数据处理 • 上一篇    下一篇

基于改进BERT和轻量化CNN的业务流程合规性检查方法

田银花1, 杨立飞1, 韩咚2,*(), 杜玉越3   

  1. 1. 山东科技大学智能装备学院, 山东 泰安 271000
    2. 山东科技大学继续教育学院, 山东 泰安 271000
    3. 山东科技大学计算机科学与工程学院, 山东 青岛 266590
  • 收稿日期:2024-02-05 出版日期:2025-07-15 发布日期:2024-06-25
  • 通讯作者: 韩咚
  • 基金资助:
    国家自然科学基金(72101137); 国家自然科学基金(61973180); 教育部人文社会科学研究青年基金项目(21YJCZH150); 教育部人文社会科学研究青年基金项目(20YJCZH159); 山东省自然科学基金(ZR2021MF117); 山东省自然科学基金(ZR2022QF020); 山东省重点研发计划(软科学)项目(2022RKY02009); 山东省习近平新时代中国特色社会主义思想研究中心山东科技大学山东数字经济研究基地项目(SDSZJD202314)

Conformance Checking Method of Business Processes Based on Improved BERT and Lightweight CNN

TIAN Yinhua1, YANG Lifei1, HAN Dong2,*(), DU Yuyue3   

  1. 1. College of Intelligent Equipment, Shandong University of Science and Technology, Tai'an 271000, Shandong, China
    2. College of Continuing Education, Shandong University of Science and Technology, Tai'an 271000, Shandong, China
    3. College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
  • Received:2024-02-05 Online:2025-07-15 Published:2024-06-25
  • Contact: HAN Dong

摘要:

业务流程合规性检查可以帮助企业及早发现潜在问题, 保证业务流程的正常运行和安全性。提出一种基于改进BERT(Bidirectional Encoder Representations from Transformers)和轻量化卷积神经网络(CNN)的业务流程合规性检查方法。首先, 根据历史事件日志中的轨迹提取轨迹前缀, 构造带拟合情况标记的数据集; 其次, 使用融合相对上下文关系的BERT模型完成轨迹特征向量的表示; 最后, 使用轻量化CNN模型构建合规性检查分类器, 完成在线业务流程合规性检查, 有效提高合规性检查的准确率。在5个真实事件日志数据集上进行实验, 结果表明, 该方法相比Word2Vec+CNN模型、Transformer模型、BERT分类模型在准确率方面有较大提升, 且与传统BERT+CNN相比, 所提方法的准确率最高可提升2.61%。

关键词: 业务流程, 合规性检查, 表示学习, 事件日志, 卷积神经网络

Abstract:

Business process conformance checking can help enterprises detect potential problems early and ensure the normal operation and security of business processes. To this end, a conformance checking method for business processes based on improved Bidirectional Encoder Representations from Transformers (BERT)and lightweight Convolutional Neural Network (CNN)is proposed. First, trace prefixes are extracted from historical event logs and labeled with fitness or unfitness, and a dataset is constructed accordingly. Second, the improved BERT model is used to represent the feature vectors of traces, which incorporates relative contextual relationships. Finally, the conformance check classifier, constructed using a lightweight CNN model, is used to complete online business process conformance checking. This method effectively improves the accuracy of conformance checking. Experiments were conducted using five real-life event log datasets. The results show that the proposed model's accuracy is superior to that of Word2Vec+CNN, Transformer, BERT. Furthermore, when compared with the traditional BERT+CNN, the accuracy can increase by up to 2.61%.

Key words: business process, conformance checking, representation learning, event log, Convolutional Neural Network (CNN)