1 |
VERA-BAQUERO A , COLOMO-PALACIOS R , MOLLOY O . Business process analytics using a big data approach. IT Professional, 2013, 15 (6): 29- 35.
|
2 |
MENDLING J , BAESENS B , BERNSTEIN A , et al. Challenges of smart business process management: an introduction to the special issue. Decision Support Systems, 2017, 100, 1- 5.
|
3 |
RAMASAMY A , CHOWDHURY S . Big data quality dimensions: a systematic literature review. Journal of Information Systems and Technology Management, 2020, 17, e202017003.
|
4 |
SARKER I H . Machine learning: algorithms, real-world applications and research directions. SN Computer Science, 2021, 2 (3): 160.
|
5 |
POPOVI ACĜ A , HACKNEY R , TASSABEHJI R , et al. The impact of big data analytics on firms' high value business performance. Information Systems Frontiers, 2018, 20 (2): 209- 222.
|
6 |
ARIYALURAN HABEEB R A , NASARUDDIN F , GANI A , et al. Real-time big data processing for anomaly detection: a survey. International Journal of Information Management, 2019, 45, 289- 307.
|
7 |
|
8 |
AUGUSTO A , MENDLING J , VIDGOF M , et al. The connection between process complexity of event sequences and models discovered by process mining. Information Sciences, 2022, 598, 196- 215.
|
9 |
|
|
|
10 |
徐兴荣, 张帅鹏, 李婷, 等. 基于轨迹聚类的业务流程剩余时间预测方法. 计算机工程, 2022, 48 (11): 247- 256.
doi: 10.19678/j.issn.1000-3428.0063159
|
|
XU X R , ZHANG S P , LI T , et al. Business process remaining time prediction method based on trajectory clustering. Computer Engineering, 2022, 48 (11): 247- 256.
doi: 10.19678/j.issn.1000-3428.0063159
|
11 |
|
12 |
SONG W , XIA X X , JACOBSEN H A , et al. Efficient alignment between event logs and process models. IEEE Transactions on Services Computing, 2017, 10 (1): 136- 149.
|
13 |
LEE W L J , VERBEEK H M W , MUNOZ-GAMA J , et al. Recomposing conformance: closing the circle on decomposed alignment-based conformance checking in process mining. Information Sciences, 2018, 466, 55- 91.
|
14 |
CHENG L , LIU C , ZENG Q T . Optimal alignments between large event logs and process models over distributed systems: an approach based on petri nets. Information Sciences, 2023, 619, 406- 420.
|
15 |
刘聪, 李会玲, 曾庆田, 等. 跨组织业务流程模型挖掘与质量评估. 计算机学报, 2023, 46 (3): 643- 656.
|
|
LIU C , LI H L , ZENG Q T , et al. Discovery and evaluation of cross-organization business process models. Chinese Journal of Computers, 2023, 46 (3): 643- 656.
|
16 |
|
17 |
PAUWELS S, CALDERS T. An anomaly detection technique for business processes based on extended dynamic Bayesian networks[C]//Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing. New York, USA: ACM Press, 2019: 494-501.
|
18 |
VERTUAM NETO R, TAVARES G, CERAVOLO P, et al. On the use of online clustering for anomaly detection in trace streams[C]//Proceedings of the XVII Brazilian Symposium on Information Systems. New York, USA: ACM Press, 2021: 1-8.
|
19 |
|
20 |
|
21 |
|
22 |
ELAZIZ E A , FATHALLA R , SHAHEEN M . Deep reinforcement learning for data-efficient weakly supervised business process anomaly detection. Journal of Big Data, 2023, 10 (1): 33.
|
23 |
孙晋永, 周博文, 闻立杰, 等. 基于注意力机制的业务过程异常检测方法. 计算机集成制造系统, 2022, 28 (10): 3039- 3051.
|
|
SUN J Y , ZHOU B W , WEN L J , et al. Anomaly detection of business processes based on attention mechanism. Computer Integrated Manufacturing Systems, 2022, 28 (10): 3039- 3051.
|
24 |
KRAJSIC P , FRANCZYK B . Semi-supervised anomaly detection in business process event data using self-attention based classification. Procedia Computer Science, 2021, 192, 39- 48.
|
25 |
倪维健, 孙宇健, 刘彤, 等. 基于注意力双向循环神经网络的业务流程剩余时间预测方法. 计算机集成制造系统, 2020, 26 (6): 1564- 1572.
|
|
NI W J , SUN Y J , LIU T , et al. Business process remaining time prediction using bidirectional recurrent neural networks with attention. Computer Integrated Manufacturing Systems, 2020, 26 (6): 1564- 1572.
|
26 |
夏灿铭, 邢玛丽, 何胜煌. 基于XLNet的业务流程下一活动预测方法. 计算机集成制造系统, 2023, 29 (10): 3496- 3503.
|
|
XIA C M , XING M L , HE S H . XLNet-based next activity prediction method of business process. Computer Integrated Manufacturing Systems, 2023, 29 (10): 3496- 3503.
|
27 |
DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[EB/OL]. [2023-09-05]. https://arxiv.org/abs/1810.04805.
|
28 |
WIEDEMANN G, REMUS S, CHAWLA A, et al. Does BERT make any sense? Interpretable word sense disambiguation with contextualized embeddings[EB/OL]. [2023-09-05]. https://arxiv.org/abs/1909.10430v2.
|
29 |
|
30 |
WANG J , TANG Y , HE S , et al. LogEvent2vec: LogEvent-to-vector based anomaly detection for large-scale logs in Internet of Things. Sensors (Basel), 2020, 20 (9): E2451.
|
31 |
|
32 |
GONZÁLEZ-CARVAJAL S, GARRIDO-MERCHÁN E C. Comparing BERT against traditional machine learning text classification[EB/OL]. [2023-09-05]. https://arxiv.org/abs/2005.13012v2.
|