作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2025, Vol. 51 ›› Issue (11): 54-62. doi: 10.19678/j.issn.1000-3428.0069761

• 热点与综述 • 上一篇    下一篇

EmoRepLKNet: 一种基于UniRepLKNet的面部情绪识别神经网络

肖志鹏1,*(), 何书峰2, 田春岐1   

  1. 1. 同济大学电子与信息工程学院, 上海 200092
    2. 青岛海洋地质研究所, 山东 青岛 266072
  • 收稿日期:2024-04-17 修回日期:2024-08-06 出版日期:2025-11-15 发布日期:2024-10-10
  • 通讯作者: 肖志鹏
  • 基金资助:
    物联网技术应用交通运输行业研发中心(杭州)开放基金(2023-04)

EmoRepLKNet: Facial Emotion Recognition Neural Network Based on UniRepLKNet

XIAO Zhipeng1,*(), HE Shufeng2, TIAN Chunqi1   

  1. 1. School of Electronic and Information Engineering, Tongji University, Shanghai 200092, China
    2. Qingdao Institute of Marine Geology, Qingdao 266072, Shandong, China
  • Received:2024-04-17 Revised:2024-08-06 Online:2025-11-15 Published:2024-10-10
  • Contact: XIAO Zhipeng

摘要:

针对面部情绪识别过程中存在的难以捕获有效特征信息、无法使关键面部信息占据更主要地位的问题, 提出一种基于UniRepLKNet的面部情绪识别网络。为了更精确地提取面部情绪特征, 设计一个掩码极化自注意力模块, 其结合了U-Net和极化自注意力机制。这一模块能够深入挖掘通道和空间之间的依赖关系, 并通过多尺度特征融合策略, 强化人脸局部关键信息在情绪识别过程中的影响力。同时, 对大核卷积神经网络(CNN)UniRepLKNet进行优化, 提出EmoRepLKNet神经网络结构。在EmoRepLKNet中, 利用掩码极化自注意力模块使网络专注于提取面部情绪识别的关键信息, 并结合大核CNN感受野广的特点, 实现对面部情绪的有效识别。实验结果表明, 在面部情绪识别数据集FER2013上, 该方法达到了76.20%的准确率, 不仅超越了现有的对比模型, 而且相较于UniRepLKNet也显著提高了面部情绪识别的准确率。同时, 在RAF-DB数据集的单标签部分进行实验, 所提方法取得了89.67%的准确率。

关键词: 情绪识别, 深度学习, 大核卷积神经网络, 注意力机制, FER2013数据集, RAF-DB数据集

Abstract:

This study presents a facial emotion recognition network based on UniRepLKNet to address the difficulty in effectively capturing feature information and preventing key facial information from occupying a more prominent position in the facial emotion recognition process. Moreover, to extract facial emotional features more accurately, the study designs a masked polarized self-attention module that combines U-Net and a polarized self-attention mechanism. This module can deeply mine the dependency between channels and spaces. It can also strengthen the influence of local key information of the face on emotion recognition through a multi-scale feature fusion strategy. The study optimizes UniRepLKNet, a universal large kernel Convolutional Neural Network (CNN), and proposes the EmoRepLKNet neural network structure. In EmoRepLKNet, the mask-polarized self-attention module enables the network to extract key information for facial emotion recognition. Combined with the wide receptive field of large kernel CNN, facial emotions can be recognized effectively. Experimental results show that on the facial emotion recognition dataset FER2013, EmoRepLKNet achieves an accuracy of 76.20%, outperforming existing comparison models and significantly improving facial emotion recognition accuracy compared to that of UniRepLKNet. Additionally, on the single-label portion of the RAF-DB dataset, the proposed method achieves an accuracy of 89.67%.

Key words: emotion recognition, deep learning, large kernel Convolutional Neural Network (CNN), attention mechanism, FER2013 dataset, RAF-DB dataset