[1] 赵宏,王枭.基于 Swin-Transformer 的黑色素瘤图像病灶
分割研究[J]. 计算机工程,2024, 50(08):249-258.
Zhao Hong, Wang Xiao. Melanoma image lesion
segmentation based on Swin-Transformer [ J ].Computer
Engineering, 2024,50 ( 08 ) : 249-258. (in Chinese)
[2] Domínguez M, Velikova Y, Navab N, et al. Diffusion as
sound propagation: Physics-inspired model for ultrasound
image generation[C]//International Conference on Medical
Image Computing and Computer-Assisted Intervention.
Cham: Springer Nature Switzerland, 2024: 613-623.
[3] Zingarini G, Cozzolino D, Corvi R, et al. M3Dsynth: A
dataset of medical 3D images with AI-generated local
manipulations[C]//ICASSP 2024-2024 IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP). 2024: 13176-13180.
[4] 张美美,秦品乐,柴锐,等.面向急性缺血性脑卒中的 CT 生
成 MRI 算法[J].计算机工程,2024,50(02):317-326.
Zhang Meimei, Qin Pinle, Chai Rui, etc. CT-generated
MRI algorithm for acute ischemic stroke [J]. Computer
Engineering, 2024,50 (02): 317-326. (in Chinese)
[5] Gómez‐Flores W, Gregorio‐Calas M J, Coelho de
Albuquerque Pereira W. BUS‐BRA: A breast ultrasound
dataset for assessing computer‐aided diagnosis systems[J].
Medical Physics, 2024, 51(4): 3110-3123.
[6] Al-Dhabyani W, Gomaa M, Khaled H, et al. Dataset of
breast ultrasound images[J]. Data in Brief, 2020, 28:
104863.
[7] Yap M H, Pons G, Marti J, et al. Automated breast
ultrasound lesions detection using convolutional neural
networks[J]. IEEE journal of biomedical and health
informatics, 2017, 22(4): 1218-1226.
[8] Goodfellow I, Pouget-Abadie J, et al. Generative
adversarial networks[J]. Communications of the ACM,
2020, 63(11): 139-144.
[9] Isola P, Zhu J Y, Zhou T, et al. Image-to-image translation
with conditional adversarial networks[C]//Proceedings of
the IEEE conference on computer vision and pattern
recognition. 2017: 1125-1134.
[10] Park T, Liu M Y, et al. Semantic image synthesis with
spatially-adaptive normalization[C]//Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition. 2019: 2337-2346.
[11] Tan Z, Chen D, Chu Q, et al. Efficient semantic image
synthesis via class-adaptive normalization[J]. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
2021, 44(9): 4852-4866.
[12] Ho J, Jain A, Abbeel P. Denoising diffusion probabilistic
models[J]. Advances in neural information processing
systems, 2020, 33: 6840-6851.
[13] Wang W, Bao J, Zhou W, et al. Semantic image synthesis
via diffusion models[J]. arxiv preprint arxiv:2207.00050,
2022.
[14] Rombach R, Blattmann A, et al. High-resolution image
synthesis with latent diffusion models[C]//Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition. 2022: 10684-10695.
[15] Shin Y, Qadir H A, Balasingham I. Abnormal colon polyp
image synthesis using conditional adversarial networks for
improved detection performance[J]. IEEE Access, 2018, 6:
56007-56017.
[16] Macháček R, Mozaffari L, et al. Mask-conditioned latent
diffusion for generating gastrointestinal polyp
images[C]//Proceedings of the 4th ACM Workshop on
Intelligent Cross-Data Analysis and Retrieval. 2023: 1-9.
[17] Hu Q, Chen Y, Xiao J, et al. Label-free liver tumor
segmentation[C]//Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition.
2023: 7422-7432.
[18] 张建兴 . 乳腺超声诊断学 [M]. 人民卫生出版
社:202112.656.
Zhang Jianxing. Breast ultrasound diagnostics
[ M ].People 's Health Publishing House : 202112.656. (in
Chinese)
[19] Li Y, Liu Y, Huang L, et al. Deep weakly-supervised breasttumor segmentation in ultrasound images with explicit
anatomical constraints[J]. Medical image analysis, 2022,
76: 102315.
[20] Xue H, Huang Z, Sun Q, et al. Freestyle layout-to-image
synthesis[C]//Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 2023:
14256-14266.
[21] Lv Z, Wei Y, Zuo W, et al. Place: Adaptive layout-semantic
fusion for semantic image synthesis[C]//Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2024: 9264-9274.
[22] Song J, Meng C, Ermon S. Denoising diffusion implicit
models[J]. arxiv preprint arxiv:2010.02502, 2020.
[23] Fontanini T, Ferrari C, Lisanti G, et al. Semantic image
synthesis via class-adaptive cross-attention[J]. IEEE
Access, 2025.
[24] Dorjsembe Z, Pao H K, et al. Polyp-ddpm:
Diffusion-based semantic polyp synthesis for enhanced
segmentation[C]// 46th Annual International Conference of
the IEEE Engineering in Medicine and Biology Society
(EMBC). 2024: 1-7.
[25] Chen J, Lu Y, Yu Q, et al. Transunet: Transformers make
strong encoders for medical image segmentation[J]. arXiv
preprint arXiv:2102.04306, 2021.
[26] Liu Y, Zhu H, Liu M, et al. Rolling-unet: Revitalizing
mlp’s ability to efficiently extract long-distance
dependencies for medical image
segmentation[C]//Proceedings of the AAAI Conference on
Artificial Intelligence. 2024, 38(4): 3819-3827.
[27] Li C, Liu X, Li W, et al. U-kan makes strong backbone for
medical image segmentation and generation[J]. arXiv
preprint arXiv:2406.02918, 2024.
[28] Zhang, Jiaying et al. Data Augmentation in
Class-Conditional Diffusion Model for Semi-Supervised
Medical Image Segmentation[C]. 2024 International Joint
Conference on Neural Networks (2024): 1-8.
|