| 1 |
苏炯铭, 刘鸿福, 项凤涛, 等. 深度神经网络解释方法综述. 计算机工程, 2020, 46 (9): 1- 15.
URL
|
|
SU J M, LIU H F, XIANG F T, et al. Survey of interpretation methods for deep neural networks. Computer Engineering, 2020, 46 (9): 1- 15.
URL
|
| 2 |
HUFF D T, WEISMAN A J, JERAJ R. Interpretation and visualization techniques for deep learning models in medical imaging. Physics in Medicine & Biology, 2021, 66 (4): 04TR01.
URL
|
| 3 |
VAN DER LAAK J, LITJENS G, CIOMPI F. Deep learning in histopathology: the path to the clinic. Nature Medicine, 2021, 27 (5): 775- 784.
doi: 10.1038/s41591-021-01343-4
|
| 4 |
何华灿. 重新找回人工智能的可解释性. 智能系统学报, 2019, 14 (3): 393- 412.
URL
|
|
HE H C. Refining the interpretability of artificial intelligence. CAAI Transactions on Intelligent Systems, 2019, 14 (3): 393- 412.
URL
|
| 5 |
ZHOU B L, KHOSLA A, LAPEDRIZA A, et al. Learning deep features for discriminative localization[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 2921-2929.
|
| 6 |
FRISTON K, HEINS C, UELTZHÖFFER K, et al. Stochastic chaos and Markov blankets. Entropy, 2021, 23 (9): 1220.
doi: 10.3390/e23091220
|
| 7 |
YU N, SONG H Y, SUN D Y, et al. Image annotation based on middle-layer convolution features of deep learning. Journal of Graphics, 2019, 40 (5): 872.
URL
|
| 8 |
WANG Q L, WU B G, ZHU P F, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 11531-11539.
|
| 9 |
ZEILER M D, FERGUS R. Visualizing and understanding convolutional networks[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2014: 818-833.
|
| 10 |
HESSE R, SCHAUB-MEYER S, ROTH S. Fast axiomatic attribution for neural networks. Neural Information Processing Systems, 2021, 34, 19513- 19524.
URL
|
| 11 |
|
| 12 |
HOLZINGER A, MALLE B, SARANTI A, et al. Towards multi-modal causability with graph neural networks enabling information fusion for explainable AI. Information Fusion, 2021, 71, 28- 37.
doi: 10.1016/j.inffus.2021.01.008
|
| 13 |
|
| 14 |
DESAI S, RAMASWAMY H G. Ablation-CAM: visual explanations for deep convolutional network via gradient-free localization[C]//Proceedings of IEEE Winter Conference on Applications of Computer Vision. Washington D. C., USA: IEEE Press, 2020: 972-980.
|
| 15 |
ZHOU L J, MA C, SHI X C, et al. Salience-CAM: visual explanations from convolutional neural networks via salience score[C]//Proceedings of International Joint Conference on Neural Networks. Washington D. C., USA: IEEE Press, 2021: 1-8.
|
| 16 |
OQUAB M, BOTTOU L, LAPTEV I, et al. Learning and transferring mid-level image representations using convolutional neural networks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2014: 1717-1724.
|
| 17 |
CHANG Y T, WANG Q S, HUNG W C, et al. Weakly-supervised semantic segmentation via sub-category exploration[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 8988-8997.
|
| 18 |
ZHANG Q S, WU Y N, ZHU S C. Interpretable convolutional neural networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 8827-8836.
|
| 19 |
BAU D, ZHU J Y, STROBELT H, et al. Understanding the role of individual units in a deep neural network. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117 (48): 30071- 30078.
URL
|
| 20 |
YIN H X, MALLYA A, VAHDAT A, et al. See through gradients: image batch recovery via GradInversion[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 16332-16341.
|
| 21 |
REN P Z, XIAO Y, CHANG X J, et al. A survey of deep active learning. ACM Computing Surveys, 2021, 54 (9): 1- 40.
URL
|
| 22 |
|
| 23 |
THECKEDATH D, SEDAMKAR R R. Detecting affect states using VGG16, ResNet50 and SE-ResNet50 networks. SN Computer Science, 2020, 1 (2): 79.
doi: 10.1007/s42979-020-0114-9
|
| 24 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 770-778.
|
| 25 |
TOUVRON H, CORD M, DOUZE M, et al. Training data-efficient image transformers & distillation through attention[EB/OL]. [2022-09-10]. https://arxiv.org/abs/2012.12877.
|
| 26 |
HOWARD A, SANDLER M, CHEN B, et al. Searching for MobileNetV3[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2020: 1314-1324.
|
| 27 |
|