| 1 | LIU Z C, HEER J. The effects of interactive latency on exploratory visual analysis. IEEE Transactions on Visualization and Computer Graphics, 2014, 20 (12): 2122- 2131.  doi: 10.1109/TVCG.2014.2346452
 | 
																													
																							| 2 | AGARWAL S, MOZAFARI B, PANDA A, et al. BlinkDB: queries with bounded errors and bounded response times on very large data[C]//Proceedings of the 8th ACM European Conference on Computer Systems. New York, USA: ACM Press, 2013: 29-42. | 
																													
																							| 3 | PARK Y, MOZAFARI B, SORENSON J, et al. VerdictDB: universalizing approximate query processing[C]//Proceedings of 2018 International Conference on Management of Data. New York, USA: ACM Press, 2018: 1461-1476. | 
																													
																							| 4 | DING B L, HUANG S L, CHAUDHURI S, et al. Sample+ seek: approximating aggregates with distribution precision guarantee[C]//Proceedings of 2016 International Conference on Management of Data. New York, USA: ACM Press, 2016: 679-694. | 
																													
																							| 5 | MA Q Z, TRIANTAFILLOU P. DBEst: revisiting approximate query processing engines with machine learning models[C]//Proceedings of 2019 International Conference on Management of Data. New York, USA: ACM Press, 2019: 1553-1570. | 
																													
																							| 6 | SHEORAN N, MITRA S, PORWAL V, et al. Conditional generative model based predicate-aware query approximation. Proceedings of the AAAI Conference on Artificial Intelligence, 2022, 36 (8): 8259- 8266.  doi: 10.1609/aaai.v36i8.20800
 | 
																													
																							| 7 | THIRUMURUGANATHAN S, HASAN S, KOUDAS N, et al. Approximate query processing for data exploration using deep generative models[C]//Proceedings of 2020 IEEE International Conference on Data Engineering. Washington D. C., USA: IEEE Press, 2020: 1309-1320. | 
																													
																							| 8 |  | 
																													
																							| 9 | 白文超, 韩希先, 王金宝. 基于条件生成模型的高效近似查询处理框架. 浙江大学学报(工学版), 2022, 56 (5): 995- 1005. | 
																													
																							|  | BAI W C, HAN X X, WANG J B. Efficient approximate query processing framework based on conditional generative model. Journal of Zhejiang University (Engineering Science), 2022, 56 (5): 995- 1005. | 
																													
																							| 10 |  | 
																													
																							| 11 | POON H, DOMINGOS P. Sum-product networks: a new deep architecture[C]//Proceedings of 2011 IEEE International Conference on Computer Vision Workshops. Washington D. C., USA: IEEE Press, 2011: 689-690. | 
																													
																							| 12 |  | 
																													
																							| 13 | MOLINA A, VERGARI A, DI MAURO N, et al. Mixed sum-product networks: a deep architecture for hybrid domains. Proceedings of the AAAI Conference on Artificial Intelligence, 2018, 32 (1): 3829- 3835. | 
																													
																							| 14 |  | 
																													
																							| 15 | SHARMA G. Pros and cons of different sampling techniques. International Journal of Applied Research, 2017, 3 (7): 749- 752. | 
																													
																							| 16 | KRISHNA K, NARASIMHA MURTY M. Genetic K-Means algorithm. IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), 1999, 29 (3): 433- 439.  doi: 10.1109/3477.764879
 | 
																													
																							| 17 | LOPEZ-PAZ D, HENNIG P, SCHÖLKOPF B. The randomized dependence coefficient[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2013: 1-9. | 
																													
																							| 18 | ACHARYA S, GIBBONS P B, POOSALA V, et al. The AQUA approximate query answering system[C]//Proceedings of 1999 ACM SIGMOD International Conference on Management of Data. New York, USA: ACM Press, 1999: 574-576. | 
																													
																							| 19 | WANG X Y, QU C B, WU W Y, et al. Are we ready for learned cardinality estimation?. Proceedings of the VLDB Endowment, 2021, 14 (9): 1640- 1654.  doi: 10.14778/3461535.3461552
 | 
																													
																							| 20 | LI B B, LU Y, KANDULA S. Warper: efficiently adapting learned cardinality estimators to data and workload drifts[C]//Proceedings of 2022 International Conference on Management of Data. New York, USA: ACM Press, 2022: 1920-1933. | 
																													
																							| 21 |  | 
																													
																							| 22 | MASSEY JR F J. The Kolmogorov-Smirnov test for goodness of fit. Journal of the American Statistical Association, 1951, 46 (253): 68- 78.  doi: 10.1080/01621459.1951.10500769
 | 
																													
																							| 23 | MOLINA A, VERGARI A, STELZNER K, et al. SPFlow: an easy and extensible library for deep probabilistic learning using sum-product networks[EB/OL]. [2022-12-05]. https://arxiv.org/abs/1901.03704.pdf . | 
																													
																							| 24 | EICHMANN P, ZGRAGGEN E, BINNIG C, et al. IDEBench: a benchmark for interactive data exploration[C]//Proceedings of 2020 ACM SIGMOD International Conference on Management of Data. New York, USA: ACM Press, 2020: 1555-1569. | 
																													
																							| 25 |  | 
																													
																							| 26 | HILPRECHT B, SCHMIDT A, KULESSA M, et al. DeepDB. Proceedings of the VLDB Endowment, 2020, 13 (7): 992- 1005.  doi: 10.14778/3384345.3384349
 |