[1] WANG L J, ADIGA A, CHEN J Z, et al. CausalGNN:causal-based graph neural networks for spatio-temporal epidemic forecasting[C]//Proceedings of the AAAI Conference on Artificial Intelligence.[S.1.]:AAAI Press, 2022:12191-12199. [2] ZHANG H, YAN C X, XIA Y W, et al. Causal gene identification using non-linear regression-based independence tests[J]. ACM Transactions on Computational Biology and Bioinformatics, 2022, 20:185-195. [3] 姚宏亮, 马晓琴, 王浩, 等. 基于形态特征与因果岭回归的股市态势预测算法[J]. 计算机工程, 2016, 42(2):175-183. YAO H L, MA X Q, WANG H, et al. Stock market trend prediction algorithm based on morphological characteristics and causal ridge regression[J]. Computer Engineering, 2016, 42(2):175-183.(in Chinese) [4] CAI R C, ZHANG Z J, HAO Z F, et al. Understanding social causalities behind human action sequences[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(8):1801-1813. [5] CHEN W, CAI R C, HAO Z F, et al. Mining hidden non-redundant causal relationships in online social networks[J]. Neural Computing and Applications, 2020, 32(11):6913-6923. [6] ERNÁN M A, ROBINS J M. Causal inference[M]. Boca Raton, USA:CRC Press, 2010. [7] RUNGE J, NOWACK P, KRETSCHMER M, et al. Detecting and quantifying causal associations in large nonlinear time series datasets[J]. Science Advances, 2019, 5(11):4996. [8] RUNGE J. Discovering contemporaneous and lagged causal relations in autocorrelated nonlinear time series datasets[EB/OL].[2023-01-05]. http://arxiv.org/abs/2003.03685v1. [9] GERHARDUS A, RUNGE J. High-recall causal discovery for autocorrelated time series with latent confounders[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems. New York, USA:ACM Press, 2020:12615-12625. [10] PETERS J, JANZING D, SCHÖLKOPF B. Causal inference on time series using restricted structural equation models[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems. New York, USA:ACM Press, 2013:154-162. [11] HYVÄRINEN A, SHIMIZU S, HOYER P O. Causal modelling combining instantaneous and lagged effects:an identifiable model based on non-Gaussian[C]//Proceedings of the 25th International Conference on Machine learning. New York, USA:ACM Press, 2008:424-431. [12] HUANG B W, ZHANG K, ZHANG J J, et al. Causal discovery from heterogeneous/nonstationary data[EB/OL].[2023-01-05]. http://arxiv.org/abs/1903.01672v5. [13] 蔡瑞初, 陈薇, 张坤, 等. 基于非时序观察数据的因果关系发现综述[J]. 计算机学报, 2017, 40(6):1470-1490. CAI R C, CHEN W, ZHANG K, et al. A survey on non-temporal series observational data based causal discovery[J]. Chinese Journal of Computers, 2017, 40(6):1470-1490.(in Chinese) [14] SPIRTES P, GLYMOUR C, SCHEINES R. Causation, prediction, and search[M].[S. 1.]:The MIT Press, 2001. [15] VERMA T S, PEARL J. Equivalence and synthesis of causal models[C]//Proceedings of the 6th Annual Conference on Uncertainty in Artificial Intelligence. New York, USA:ACM Press, 2022:221-236. [16] OYER P, JANZING D, MOOIJ J M, et al. Nonlinear causal discovery with additive noise models[C]//Proceedings of the 22nd Annual Conference on Neural Information Processing Systems. New York, USA:ACM Press, 2008:689-696. [17] SHIMIZU S, HOYER P O, HYVÄRINEN A, et al. A linear non-Gaussian acyclic model for causal discovery[J]. Journal of Machine Learning Research, 2006, 7:2003-2030. [18] HANG K, HYVARINEN A. On the identifiability of the post-nonlinear causal model[C]//Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence.[S.1.]:AUAI Press, 2009:647-655. [19] PETERS J, MOOIJ J M, JANZING D, et al. Causal discovery with continuous additive noise models[J]. Journal of Machine Learning Research, 2014, 15:2009-2053. [20] ETERS J, MOOIJ J M, JANZING D, et al. Identifiability of Causal Graphs Using Functional Models[EB/OL].[2023-01-05]. https://export.arxiv.org/ftp/arxiv/papers/1202/1202.3757.pdf. [21] GRETTON A, HERBRICH R, SMOLA A, et al. Kernel methods for measuring independence[J]. Journal of Machine Learning Research, 2005, 6:2075-2129. [22] GRETTON A, FUKUMIZU K, TEO C H, et al. A kernel statistical test of independence[C]//Proceedings of 2007 Conference on Advances in Neural Information Processing Systems. Cambridge, USA:MIT Press,2008:585-592. [23] SUN J, TAYLOR D, BOLLT E M. Causal network inference by optimal causation entropy[J]. SIAM Journal on Applied Dynamical Systems, 2015, 14(1):73-106. [24] HANG K, PETERS J, JANZING D, et al. Kernel-based conditional independence test and application in causal discovery[EB/OL].[2023-01-05]. https://arxiv.org/ftp/arxiv/papers/1202/1202.3775.pdf. [25] EICHENBACK H. The direction of time[M].[M. 1.]:Dover Publications Inc., 1989. [26] BABA K, SHIBATA R, SIBUYA M. Partial correlation and conditional correlation as measures of conditional independence[J]. Australian & New Zealand Journal of Statistics, 2004, 46(4):657-664. |