| 1 | MCKEOWN K R. Paraphrasing using given and new information in a question-answer system[C]//Proceedings of the 17th Annual Meeting on Association for Computational Linguistics. Stroudsburg, USA: Association for Computational Linguistics, 1979: 67-72. | 
																													
																							| 2 | JOLLY S, FALKE T, TIRKAZ C, et al. Data-efficient paraphrase generation to bootstrap intent classification and slot labeling for new features in task-oriented dialog systems[C]//Proceedings of the 28th International Conference on Computational Linguistics: Industry Track. Stroudsburg, USA: International Committee on Computational Linguistics, 2020: 10-20. | 
																													
																							| 3 | IORDANSKAJA L, KITTREDGE R, POLGUÈRE A. Lexical selection and paraphrase in a meaning-text generation model[M]//PARIS C L, SWARTOUT W R, MANN W C. Natural language generation in artificial intelligence and computational linguistics. Berlin, Germany: Springer, 1991: 293-312. | 
																													
																							| 4 | CALLISON-BURCH C, KOEHN P, OSBORNE M. Improved statistical machine translation using paraphrases[C]//Proceedings of Human Language Technology Conference of the North American Chapter of the Association for Computational Linguistics. Stroudsburg, USA: Association for Computational Linguistics, 2006: 17-24. | 
																													
																							| 5 | 鲍宇, 黄书剑, 周浩, 等. 基于句法模板采样的无监督复述生成方法. 中国科学: 信息科学, 2022, 52 (10): 1808- 1821.  URL
 | 
																													
																							|  | BAO Y, HUANG S J, ZHOU H, et al. Unsupervised retelling generation method based on syntactic template sampling. Scientia Sinica(Informationis), 2022, 52 (10): 1808- 1821.  URL
 | 
																													
																							| 6 | IYYER M, WIETING J, GIMPEL K, et al. Adversarial example generation with syntactically con-trolled paraphrase networks[C]//Proceedings of 2018 Conference of the North American Chapter of the Association for Computational Linguistics. Stroudsburg, USA: Association for Computational Linguistics, 2018: 1875-1885. | 
																													
																							| 7 |  | 
																													
																							| 8 | LEWIS M, LIU Y H, GOYAL N, et al. BART: denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA: Association for Computational Linguistics, 2020: 7871-7880. | 
																													
																							| 9 | ZHOU J N, BHAT S. Paraphrase generation: a survey of the state of the art[C]//Proceedings of 2021 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2021: 5075-5086. | 
																													
																							| 10 | LIN Z, WAN X J. Pushing paraphrase away from original sentence: a multi-round paraphrase generation approach[C]//Proceedings of ACL-IJCNLP 2021. Stroudsburg, USA: Association for Computational Linguistics, 2021: 1548-1557. | 
																													
																							| 11 | 侯志荣, 范晓东, 张华, 等. J-SGPGN: 基于序列与图的联合学习复述生成网络. 计算机应用, 2023, 43 (5): 1365- 1371.  URL
 | 
																													
																							|  | HOU Z R, FAN X D, ZHANG H, et al. J-SGPGN: paraphrase generation networks based on joint learning of sequence and graph. Journal of Computer Applications, 2023, 43 (5): 1365- 1371.  URL
 | 
																													
																							| 12 | SU Y X, VANDYKE D, BAKER S, et al. Keep the primary, rewrite the secondary: a two-stage approach for paraphrase generation[C]//Proceedings of ACL-IJCNLP 2021. Stroudsburg, USA: Association for Computational Linguistics, 2021: 560-569. | 
																													
																							| 13 | YANG H R, LAM W, LI P J. Contrastive representation learning for exemplar-guided paraphrase generation[C]//Proceedings of EMNLP 2021. Stroudsburg, USA: Association for Computational Linguistics, 2021: 4754-4761. | 
																													
																							| 14 | SUN J A, MA X Z, PENG N Y. AESOP: paraphrase generation with adaptive syntactic control[C]//Proceedings of 2021 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2021: 5176-5189. | 
																													
																							| 15 | YANG E G, BAI C L, XIONG D Y, et al. Learning structural information for syntax-controlled paraphrase generation[C]//Proceedings of NAACL 2022. Stroudsburg, USA: Association for Computational Linguistics, 2022: 2079-2090. | 
																													
																							| 16 | YANG E G, LIU M T, XIONG D Y, et al. Syntactically-informed unsupervised paraphrasing with non-parallel data[C]//Proceedings of 2021 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2021: 2594-2604. | 
																													
																							| 17 | HUANG K H, CHANG K W. Generating syntactically controlled paraphrases without using annotated parallel pairs[C]//Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics. Stroudsburg, USA: Association for Computational Linguistics, 2021: 1022-1033. | 
																													
																							| 18 | 张琳, 刘明童, 张玉洁, 等. 探索低资源的迭代式复述生成增强方法. 智能系统学报, 2022, 17 (4): 680- 687.  URL
 | 
																													
																							|  | ZHANG L, LIU M T, ZHANG Y J, et al. Explore the low-resource iterative paraphrase generation enhancement method. CAAI Transactions on Intelligent Systems, 2022, 17 (4): 680- 687.  URL
 | 
																													
																							| 19 | BANDEL E, AHARONOV R, SHMUELI-SCHEUER M, et al. Quality controlled paraphrase generation[C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA: Association for Computational Linguistics, 2022: 596-609. | 
																													
																							| 20 | WESTON J, LENAIN R, MEEPEGAMA U, et al. Generative pretraining for paraphrase evaluation[C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA: Association for Computational Linguistics, 2022: 4052-4073. | 
																													
																							| 21 | PAPINENI K, ROUKOS S, WARD T, et al. BLEU: a method for automatic evaluation of machine translation[C]//Proceedings of the 40th Annual Meeting on Association for Computational Linguistics. Stroudsburg, USA: Association for Computational Linguistics, 2022: 311-318. | 
																													
																							| 22 |  | 
																													
																							| 23 | LAVIE A, AGARWAL A. METEOR: an automatic metric for MT evaluation with high levels of correlation with human judgments[C]//Proceedings of StatMT'07. Stroudsburg, USA: Association for Computational Linguistics, 2007: 228-231. | 
																													
																							| 24 | POPOVIĆ M. chrF++: words helping character n-grams[C]//Proceedings of the 2nd Conference on Machine Translation. Stroudsburg, USA: Association for Computational Linguistics, 2017: 612-618. | 
																													
																							| 25 |  | 
																													
																							| 26 | ZHAO W, PEYRARD M, LIU F, et al. MoverScore: text generation evaluating with contextualized embeddings and earth mover distance[C]//Proceedings of 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2019: 563-578. | 
																													
																							| 27 | SELLAM T, DAS D, PARIKH A. BLEURT: learning robust metrics for text generation[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA: Association for Computational Linguistics, 2020: 7881-7892. | 
																													
																							| 28 | 安波. 大规模多粒度中文复述语料库. 情报工程, 2022, 8 (2): 19- 33.  URL
 | 
																													
																							|  | AN B. A large scale multi-granularity Chinese paraphrase corpus. Technology Intelligence Engineering, 2022, 8 (2): 19- 33.  URL
 | 
																													
																							| 29 | KIM Y. Convolutional neural networks for sentence classification[C]//Proceedings of 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2014: 1746-1751. |