| 1 | 陈首彬. 激光LiDAR/视觉融合的SLAM(LV-SLAM)关键技术研究. 测绘学报, 2023, 52(1): 169.  URL
 | 
																													
																							|  | CHEN S B. Research on key technologies of laser LiDAR/visual fusion SLAM(LV-SLAM). Journal of Surveying and Mapping, 2023, 52(1): 169.  URL
 | 
																													
																							| 2 | LIU Z, SHI D, LI R H, et al. PLC-VIO: visual-inertial odometry based on point-line constraints. IEEE Transactions on Automation Science and Engineering, 2022, 19(3): 1880- 1897.  doi: 10.1109/TASE.2021.3077026
 | 
																													
																							| 3 | MUR-ARTAL R, TARDOS J D. ORB-SLAM2: an open-source SLAM system for monocular, stereo, and RGB-D cameras. IEEE Transactions on Robotics, 2017, 33(5): 1255- 1262.  doi: 10.1109/TRO.2017.2705103
 | 
																													
																							| 4 | ENGEL J, SCHÖPS T, CREMERS D. LSD-SLAM: large-scale direct monocular SLAM[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2014: 834-849. | 
																													
																							| 5 | ENGEL J, KOLTUN V, CREMERS D. Direct sparse odometry. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(3): 611- 625.  doi: 10.1109/TPAMI.2017.2658577
 | 
																													
																							| 6 | 张慧娟, 方灶军, 杨桂林. 动态环境下基于线特征的RGB-D视觉里程计. 机器人, 2019, 41(1): 75- 82.  URL
 | 
																													
																							|  | ZHANG H J, FANG Z J, YANG G L. RGB-D visual odometer in dynamic environments using line features. Robot, 2019, 41(1): 75- 82.  URL
 | 
																													
																							| 7 | 杨世强, 范国豪, 白乐乐, 等. 基于几何约束的室内动态环境视觉SLAM. 计算机工程与应用, 2021, 57(16): 203- 212.  doi: 10.3778/j.issn.1002-8331.2005-0158
 | 
																													
																							|  | YANG S Q, FAN G H, BAI L L, et al. Geometric constraints-based visual SLAM under dynamic indoor environment. Computer Engineering and Applications, 2021, 57(16): 203- 212.  doi: 10.3778/j.issn.1002-8331.2005-0158
 | 
																													
																							| 8 | DAI W C, ZHANG Y, LI P, et al. RGB-D SLAM in dynamic environments using point correlations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(1): 373- 389.  doi: 10.1109/TPAMI.2020.3010942
 | 
																													
																							| 9 | YU C, LIU Z X, LIU X J. DS-SLAM: a semantic visual SLAM towards dynamic environments[C]//Proceedings of International Conference on Intelligent Robots and Systems. Washington D. C., USA: IEEE Press, 2018: 1168-1174. | 
																													
																							| 10 | BESCOS B, FÁCIL J M, CIVERA J, et al. DynaSLAM: tracking, mapping and inpainting in dynamic scenes. IEEE Robotics and Automation Letters, 2018, 3(4): 4076- 4083.  doi: 10.1109/LRA.2018.2860039
 | 
																													
																							| 11 | ZHONG F W, WANG S, Z ZHANG Z Q. Detect-SLAM: making object detection and SLAM mutually beneficial[C]//Proceedings of IEEE Winter Conference on Applications of Computer Vision. Washington D. C., USA: IEEE Press, 2018: 1001-1010. | 
																													
																							| 12 |  | 
																													
																							| 13 | XIAO L H, WANG J G, QIU X S, et al. Dynamic-SLAM: semantic monocular visual localization and mapping based on deep learning in dynamic environment. Robotics and Autonomous Systems, 2019, 117, 1- 16.  doi: 10.1016/j.robot.2019.03.012
 | 
																													
																							| 14 | HE K M, GKIOXARI G, DOLLÁR O, et al. Mask R-CNN. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 42(2): 386- 397. | 
																													
																							| 15 | HU Z, ZHAO J, LUO Y, et al. Semantic SLAM based on improved DeepLabv3+ in dynamic scenarios. IEEE Access, 2022, 10, 21160- 21168.  doi: 10.1109/ACCESS.2022.3154086
 | 
																													
																							| 16 | BOTTLENECKS M I R A. MobileNetV2: inverted residuals and linear bottlenecks[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 18-23. | 
																													
																							| 17 | ZHANG X, LI J, HUA Z. MRSE-Net: multiscale residuals and SE-attention network for water body segmentation from satellite images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15, 5049- 5064.  doi: 10.1109/JSTARS.2022.3185245
 | 
																													
																							| 18 | SHARMA S, KUMAR S. The Xception model: a potential feature extractor in breast cancer histology images classification. ICT Express, 2022, 8(1): 101- 108.  doi: 10.1016/j.icte.2021.11.010
 | 
																													
																							| 19 | PAN Z, HOU J, YU L. Optimization RGB-D 3D reconstruction algorithm based on dynamic SLAM. IEEE Transactions on Instrumentation and Measurement, 2023, 72, 1- 13. | 
																													
																							| 20 | ZHOU P, LIU Y, MENG Z. PointSLOT: real-time simultaneous localization and object tracking for dynamic environment. IEEE Robotics and Automation Letters, 2023, 8(5): 2645- 2652.  doi: 10.1109/LRA.2023.3256919
 | 
																													
																							| 21 | CAI Y Q, ZHOU W J, ZHANG L T, et al. DHFNet: dual-decoding hierarchical fusion network for RGB-thermal semantic segmentation. The Visual Computer, 2023, 6, 1- 11. | 
																													
																							| 22 | CHEN L, WANG Y, MIAO Z, et al. Transformer-based imitative reinforcement learning for multi-robot path planning. IEEE Transactions on Industrial Informatics, 2023, 46, 1- 10. | 
																													
																							| 23 | XIE H, ZHANG D, WANG J, et al. Semi-direct multimap SLAM system for real-time sparse 3D map reconstruction. IEEE Transactions on Instrumentation and Measurement, 2023, 72, 1- 13. | 
																													
																							| 24 | ROSINOL A, LEONARD J J, CARLONE L. Probabilistic volumetric fusion for dense monocular SLAM[C]//Proceedings of Winter Conference on Applications of Computer Vision. Washington D. C., USA: IEEE Press, 2023: 3097-3105. | 
																													
																							| 25 | CHENG S, SUN C, ZHANG S, et al. SG-SLAM: a real-time RGB-D visual SLAM toward dynamic scenes with semantic and geometric information. IEEE Transactions on Instrumentation and Measurement, 2023, 72, 1- 12. | 
																													
																							| 26 | WANG J, XU M, ZHAO G, et al. Feature- and distribution-based LiDAR SLAM with generalized feature representation and heuristic nonlinear optimization. IEEE Transactions on Instrumentation and Measurement, 2023, 72, 1- 15. |