Author Login Chief Editor Login Reviewer Login Editor Login Remote Office

Computer Engineering ›› 2025, Vol. 51 ›› Issue (2): 111-125. doi: 10.19678/j.issn.1000-3428.0068510

• Artificial Intelligence and Pattern Recognition • Previous Articles     Next Articles

Short-Time Traffic Flow Prediction on Narrow Roads Based on Improved Whale-Optimized GRU

JIA Shuo1, LIN Shiyang2,*(), YANG Miaohui1, SUN Teng1   

  1. 1. School of Transportation and Vehicle Engineering, Shandong University of Technology, Zibo 255000, Shandong, China
    2. School of Architectural Engineering, Weifang University of Science and Technology, Weifang 262700, Shandong, China
  • Received:2023-10-07 Online:2025-02-15 Published:2024-04-15
  • Contact: LIN Shiyang

改进鲸鱼优化GRU的窄路短时车流量预测

贾硕1, 林士飏2,*(), 杨苗会1, 孙滕1   

  1. 1. 山东理工大学交通与车辆工程学院, 山东 淄博 255000
    2. 潍坊科技学院建筑工程学院, 山东 潍坊 262700
  • 通讯作者: 林士飏
  • 基金资助:
    教育部高等教育司产学合作协同育人汽车项目(202102473012); 山东省重点研发计划(重大科技创新工程)(2023CXGC010111)

Abstract:

To address the unavoidable bottleneck in traffic scenes, the short-time traffic flow prediction of narrow roads is very important for optimizing path planning and improving traffic conditions. For traffic on narrow roads, an Improved Whale Optimization Algorithm (IWOA)-Gated Recurrent Unit (GRU) short-time narrow road traffic prediction model is proposed based on a good node-set initialization population, nonlinear parameter control, and Cauchy variation perturbation. An empirical study is conducted using the Simulation of Urban Mobility (SUMO) dataset. The experimental results show that IWOA has better global performance, convergence speed, and stability compared with WOA-GRU, Particle Swarm Optimization (PSO)-GRU, and Long Short-Term Memory (LSTM). The Root Mean Square Error (RMSE) of the proposed method decreased by 10.96%, 28.71%, and 42.23%, respectively, and Mean Absolute Percentage Error (MAPE) decreased by 13.92%, 46.18%, and 52.83%, respectively, indicating significant accuracy and stability.

Key words: short-time traffic flow prediction, narrow roads, Whale Optimization Algorithm (WOA), Gated Recurrent Unit (GRU), Simulation of Urban Mobility (SUMO) software

摘要:

窄路段作为交通场景中不可避免的瓶颈路段, 其短时车流量预测对优化路径规划、改善交通状况具有重要意义。针对窄路段的时效性, 同时考虑适用模型的准确度, 提出一种基于佳点集初始化种群、非线性参数控制及柯西变异扰动的改进鲸鱼优化算法(IWOA)-门控循环单元(GRU)的窄路短时车流量预测模型, 以SUMO(Simulation of Urban Mobility)仿真数据进行了实证研究。对比实验结果显示, IWOA具有较好的全局性、收敛速度且更加稳定。基于IWOA-GRU的窄路短时车流量预测模型, 均方根误差(RMSE)指标相较于WOA-GRU、PSO-GRU、长短期记忆神经(LSTM)网络分别降低10.96%、28.71%、42.23%, 平均绝对百分比误差(MAPE)指标分别降低13.92%、46.18%、52.83%, 有较为显著的准确性和稳定性。

关键词: 短时车流量预测, 窄路段, 鲸鱼优化算法, 门控循环单元, SUMO软件