1 |
VLAHOGIANNI E I , KARLAFTIS M G , GOLIAS J C . Short-term traffic forecasting: where we are and where we're going. Transportation Research Part C: Emerging Technologies, 2014, 43, 3- 19.
doi: 10.1016/j.trc.2014.01.005
|
2 |
LEVIN M , TSAO Y D . On forecasting freeway occupancies and volumes(abridgment). Transportation Research Record, 1980, (773): 47- 49.
|
3 |
WILLIAMS B M , HOEL L A . Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: theoretical basis and empirical results. Journal of Transportation Engineering, 2003, 129 (6): 664- 672.
doi: 10.1061/(ASCE)0733-947X(2003)129:6(664)
|
4 |
GUO J H , HUANG W , WILLIAMS B M . Adaptive Kalman filter approach for stochastic short-term traffic flow rate prediction and uncertainty quantification. Transportation Research Part C: Emerging Technologies, 2014, 43, 50- 64.
doi: 10.1016/j.trc.2014.02.006
|
5 |
KAMARIANAKIS Y , PRASTACOS P . Forecasting traffic flow conditions in an urban network: comparison of multivariate and univariate approaches. Transportation Research Record: Journal of the Transportation Research Board, 2003, 1857 (1): 74- 84.
doi: 10.3141/1857-09
|
6 |
OKUTANI I , STEPHANEDES Y J . Dynamic prediction of traffic volume through Kalman filtering theory. Transportation Research Part B: Methodological, 1984, 18 (1): 1- 11.
doi: 10.1016/0191-2615(84)90002-X
|
7 |
ERMAGUN A , LEVINSON D . Spatiotemporal short-term traffic forecasting using the network weight matrix and systematic detrending. Transportation Research Part C: Emerging Technologies, 2019, 104, 38- 52.
doi: 10.1016/j.trc.2019.04.014
|
8 |
WANG J , DENG W , GUO Y T . New Bayesian combination method for short-term traffic flow forecasting. Transportation Research Part C: Emerging Technologies, 2014, 43, 79- 94.
doi: 10.1016/j.trc.2014.02.005
|
9 |
QI Y , ISHAK S . A hidden Markov model for short term prediction of traffic conditions on freeways. Transportation Research Part C: Emerging Technologies, 2014, 43, 95- 111.
doi: 10.1016/j.trc.2014.02.007
|
10 |
CASTRO-NETO M , JEONG Y S , JEONG M K , et al. Online-SVR for short-term traffic flow prediction under typical and atypical traffic conditions. Expert Systems with Applications, 2009, 36 (3): 6164- 6173.
doi: 10.1016/j.eswa.2008.07.069
|
11 |
WANG J , SHI Q X . Short-term traffic speed forecasting hybrid model based on Chaos-wavelet analysis-support vector machine theory. Transportation Research Part C: Emerging Technologies, 2013, 27, 219- 232.
doi: 10.1016/j.trc.2012.08.004
|
12 |
ZHENG Z D , SU D C . Short-term traffic volume forecasting: a k-nearest neighbor approach enhanced by constrained linearly sewing principle component algorithm. Transportation Research Part C: Emerging Technologies, 2014, 43, 143- 157.
doi: 10.1016/j.trc.2014.02.009
|
13 |
VLAHOGIANNI E I , KARLAFTIS M G , GOLIAS J C . Optimized and meta-optimized neural networks for short-term traffic flow prediction: a genetic approach. Transportation Research Part C: Emerging Technologies, 2005, 13 (3): 211- 234.
doi: 10.1016/j.trc.2005.04.007
|
14 |
DUNNE S , GHOSH B . Regime-based short-term multivariate traffic condition forecasting algorithm. Journal of Transportation Engineering, 2012, 138 (4): 455- 466.
doi: 10.1061/(ASCE)TE.1943-5436.0000337
|
15 |
LV Y S , DUAN Y J , KANG W W , et al. Traffic flow prediction with big data: a deep learning approach. IEEE Transactions on Intelligent Transportation Systems, 2014, 16 (2): 865- 873.
URL
|
16 |
LA A I , LOBO J L , CAPECCI E , et al. Adaptive long-term traffic state estimation with evolving spiking neural networks. Transportation Research Part C: Emerging Technologies, 2019, 101, 126- 144.
doi: 10.1016/j.trc.2019.02.011
|
17 |
MA X L , TAO Z M , WANG Y H , et al. Long short-term memory neural network for traffic speed prediction using remote microwave sensor data. Transportation Research Part C: Emerging Technologies, 2015, 54, 187- 197.
doi: 10.1016/j.trc.2015.03.014
|
18 |
ZHENG W Z , LEE D H , SHI Q X . Short-term freeway traffic flow prediction: Bayesian combined neural network approach. Journal of Transportation Engineering, 2006, 132 (2): 114- 121.
doi: 10.1061/(ASCE)0733-947X(2006)132:2(114)
|
19 |
DIMITRIOU L , TSEKERIS T , STATHOPOULOS A . Adaptive hybrid fuzzy rule-based system approach for modeling and predicting urban traffic flow. Transportation Research Part C: Emerging Technologies, 2008, 16 (5): 554- 573.
doi: 10.1016/j.trc.2007.11.003
|
20 |
罗例东. 高速公路异常事件影响范围演化分析与预测研究[D]. 重庆: 重庆大学, 2015.
|
|
LUO L D. Evolution analysis and prediction research on the influence range of expressway abnormal events[D]. Chongqing: Chongqing University, 2015. (in Chinese)
|
21 |
张小安. 交通事故条件下的交通流仿真研究[D]. 广州: 广州大学, 2017.
|
|
ZHANG X A. Research on traffic flow simulation under traffic accident conditions[D]. Guangzhou: Guangzhou University, 2017. (in Chinese)
|
22 |
|
|
WANG W, AN H, SONG J, et al. From Baidu, Tesla made the latest achievements in the intelligence development trend of automobile[N]. China Computer News, 2021-11-08(14). (in Chinese) 10.3969/j.issn.2096-0182.2021.05.005
|
23 |
孙勇义. Apollo开放的自动驾驶之路. 软件和集成电路, 2017, (11): 78- 79.
doi: 10.3969/j.issn.2096-062X.2017.11.039
|
|
SUN Y Y . Apollo's open road to autonomous driving. Software and Integrated Circuit, 2017, (11): 78- 79.
doi: 10.3969/j.issn.2096-062X.2017.11.039
|
24 |
张明. 蘑菇车联发布以车路云为核心的自动驾驶系统. 工业经济论坛, 2020, 7 (6): 80- 81.
|
|
ZHANG M . Mushroom Car Federation released an automatic driving system with vehicle-road-cloud as the core. Intelligent Connected Vehicles, 2020, 7 (6): 80- 81.
|
25 |
沈记全, 魏坤. 融合残差网络的CR-BiGRU入侵检测模型. 吉林大学学报(理学版), 2023, 61 (2): 353- 361.
doi: 10.13413/j.cnki.jdxblxb.2022032
|
|
SHEN J Q , WEI K . CR-BiGRU intrusion detection model based on residual network. Journal of Jilin University (Science Edition), 2023, 61 (2): 353- 361.
doi: 10.13413/j.cnki.jdxblxb.2022032
|
26 |
CHUNG J, GVLÇEHRE Ç, CHO K, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[EB/OL]. [2023-08-10]. https://arxiv.org/abs/1412.3555.
|
27 |
GOODFELLOW I , BENGIO Y , COURVILLE A , et al. Deep learning: adaptive computation and machine learning series. Cambridge, USA: The MIT Press, 2016.
|
28 |
MIRJALILI S , LEWIS A . The whale optimization algorithm. Advances in Engineering Software, 2016, 95, 51- 67.
doi: 10.1016/j.advengsoft.2016.01.008
|
29 |
SYAFARUDDIN , NARIMATSU H , MIYAUCHI H . Optimal energy utilization of photovoltaic systems using the non-binary genetic algorithm. Energy Technology & Policy, 2015, 2 (1): 10- 18.
URL
|
30 |
华罗庚, 王元. 数论在近似分析中的应用. 北京: 科学出版社, 1978.
|
|
HUA L G , W Y . Application of number theory in approximate analysis. Beijing: Science Press, 1978.
|
31 |
OU X F , WU M , PU Y Y , et al. Cuckoo search algorithm with fuzzy logic and Gauss-Cauchy for minimizing localization error of WSN. Applied Soft Computing, 2022, 125, 109211.
doi: 10.1016/j.asoc.2022.109211
|
32 |
LOPEZ P A, BEHRISCH M, BIEKER-WALZ L, et al. Microscopic traffic simulation using SUMO[C]//Proceedings of the 21st International Conference on Intelligent Transportation Systems. Washington D. C., USA: IEEE Press, 2018: 2575-2582.
|