| 1 | HE T, ZHANG Z, ZHANG H, et al. Bag of tricks for image classification with convolutional neural networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2019: 558-567. | 
																													
																							| 2 | HAJAVI A, ETEMAD A. Fine-grained early frequency attention for deep speaker recognition[C]//Proceedings of 2022 International Joint Conference on Neural Networks. Washington D. C., USA: IEEE Press, 2022: 1-6. | 
																													
																							| 3 | WOLF T, DEBUT L, SANH V, et al. Transformers: state-of-the-art natural language processing[C]//Proceedings of 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations. [S. l. ]: Association for Computational Linguistics, 2020: 38-45. | 
																													
																							| 4 | WANG Y S, MA X J, CHEN Z Y, et al. Symmetric cross entropy for robust learning with noisy labels[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2019: 322-330. | 
																													
																							| 5 | DENG J K, GUO J, YANG J, et al. ArcFace: additive angular margin loss for deep face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44 (10): 5962- 5979.  doi: 10.1109/TPAMI.2021.3087709
 | 
																													
																							| 6 | LIU W, WEN Y, YU Z, et al. Large-margin Softmax loss for convolutional neural networks[C]//Proceedings of the 33rd International Conference on Machine Learning. New York, USA: ACM Press, 2016: 507-516. | 
																													
																							| 7 |  | 
																													
																							| 8 | WANG F, CHENG J, LIU W Y, et al. Additive margin Softmax for face verification. IEEE Signal Processing Letters, 2018, 25 (7): 926- 930.  doi: 10.1109/LSP.2018.2822810
 | 
																													
																							| 9 | ZHENG Q H, ZHU J H, LI Z Y, et al. Comprehensive multi-view representation learning. Information Fusion, 2023, 89, 198- 209.  doi: 10.1016/j.inffus.2022.08.014
 | 
																													
																							| 10 | KHAJWAL A B, CHENG C S, NOSHADRAVAN A. Post-disaster damage classification based on deep multi-view image fusion. Computer-Aided Civil and Infrastructure Engineering, 2023, 38 (4): 528- 544.  doi: 10.1111/mice.12890
 | 
																													
																							| 11 | REBUFFI S A, VEDALDI A, BILEN H. Efficient parametrization of multi-domain deep neural networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 8119-8127. | 
																													
																							| 12 | WANG X B, ZHANG S F, LEI Z, et al. Ensemble soft-margin Softmax loss for image classification[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence. Washington D. C., USA: IEEE Press, 2018: 992-998. | 
																													
																							| 13 | HE L T, YUAN H R. Improved cross-entropy research based on JS divergence: Iris flower data as an example[C]//Proceedings of IEEE International Conference on Advances in Electrical Engineering and Computer Applications. Washington D. C., USA: IEEE Press, 2022: 1455-1459. | 
																													
																							| 14 | BREIMAN L. Random forests. Machine Learning, 2001, 45 (1): 5- 32.  doi: 10.1023/A:1010933404324
 | 
																													
																							| 15 | 王开, 仇海涛, 石海洋. 基于BAS-BP-Bagging模型的光纤陀螺温度补偿. 半导体光电, 2023, 44 (4): 519- 524. | 
																													
																							|  | WANG K, QIU H T, SHI H Y. The temperature compensation method of fiber optic gyroscope based on BAS-BP-Bagging neural network. Semiconductor Optoelectronics, 2023, 44 (4): 519- 524. | 
																													
																							| 16 | CHEN T Q, GUESTRIN C. XGBoost: a scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM Press, 2016: 785-794. | 
																													
																							| 17 | FREUND Y, SCHAPIRE R E. Experiments with a new boosting algorithm[C]//Proceedings of the 20th International Conference on Machine Learning. New York, USA: ACM Press, 1996: 148-156. | 
																													
																							| 18 | CHEN Z, DUAN J, KANG L, et al. Class-imbalanced deep learning via a class-balanced ensemble. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33 (10): 5626- 5640.  doi: 10.1109/TNNLS.2021.3071122
 | 
																													
																							| 19 | LAKSHMINARAYANAN B, PRITZEL A, BLUNDELL C. Simple and scalable predictive uncertainty estimation using deep ensembles[EB/OL]. [2023-09-05]. https://arxiv.org/abs/1612.01474 . | 
																													
																							| 20 | ZHANG S, LIU M, YAN J. The diversified ensemble neural network[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2020: 16001-16011. | 
																													
																							| 21 | SUREKHA G, KEERTHANA P S, VARMA N J, et al. Hybrid image classification model using ResNet101 and VGG16[C]//Proceedings of the 2nd International Conference on Applied Artificial Intelligence and Computing. Washington D. C., USA: IEEE Press, 2023: 729-734. | 
																													
																							| 22 | JIANG B B, XIANG J H, WU X Y, et al. Robust adaptive-weighting multi-view classification[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management. New York, USA: ACM Press, 2021: 3117-3121. | 
																													
																							| 23 | KUMAR V, MINZ S. Multi-view ensemble learning: an optimal feature set partitioning for high-dimensional data classification. Knowledge and Information Systems, 2016, 49 (1): 1- 59.  doi: 10.1007/s10115-015-0875-y
 | 
																													
																							| 24 | SUN S, DONG W, LIU Q. Multi-view representation learning with deep Gaussian processes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43 (12): 4453- 4468.  doi: 10.1109/TPAMI.2020.3001433
 | 
																													
																							| 25 | WANG C L, LI C, WANG J. Two modified augmented Lagrange multiplier algorithms for Toeplitz matrix compressive recovery. Computers & Mathematics with Applications, 2017, 74 (8): 1915- 1921. | 
																													
																							| 26 | DUCHI J, SHALEV-SHWARTZ S, SINGER Y, et al. Efficient projections onto the l1-ball for learning in high dimensions[C]//Proceedings of the 25th International Conference on Machine Learning. New York, USA: ACM Press, 2008: 272-279. | 
																													
																							| 27 | CHANG B, MENG L L, HABER E, et al. Reversible architectures for arbitrarily deep residual neural networks. Proceedings of the AAAI Conference on Artificial Intelligence, 2018, 32 (1): 2811- 2818. | 
																													
																							| 28 | LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 1998, 86 (11): 2278- 2324.  doi: 10.1109/5.726791
 | 
																													
																							| 29 | KRIZHEVSKY A, HINTON G. Learning multiple layers of features from tiny images. Handbook of Systemic Autoimmune Diseases, 2009, 1 (4): 1- 60. | 
																													
																							| 30 |  | 
																													
																							| 31 |  | 
																													
																							| 32 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 770-778. | 
																													
																							| 33 | HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 4700-4708. | 
																													
																							| 34 | SHEN Z Q, HE Z K, XUE X Y. MEAL: multi-model ensemble via adversarial learning. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33 (1): 4886- 4893.  doi: 10.1609/aaai.v33i01.33014886
 | 
																													
																							| 35 | SINHA T, VERMA B. Convolutional ensemble network for image classification[C]//Proceedings of IEEE Symposium Series on Computational Intelligence. Washington D. C., USA: IEEE Press, 2022: 285-292. | 
																													
																							| 36 | WENZEL F, SNOEK J, TRAN D, et al. Hyperparameter ensembles for robustness and uncertainty quantification[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems. California, USA: NIPS, 2020: 6514-6527. | 
																													
																							| 37 |  | 
																													
																							| 38 | LAVOIE M A, WASLANDER S L. Class instance balanced learning for long-tailed classification[C]//Proceedings of the 20th Conference on Robots and Vision. Washington D. C., USA: IEEE Press, 2023: 121-128. | 
																													
																							| 39 |  |