1 |
中国国务院. 新一代人工智能发展规划. 科技导报, 2018, 36(17): 113.
URL
|
|
State Council of China. New generation artificial intelligence development plan. Science and Technology Herald, 2018, 36(17): 113.
URL
|
2 |
杨鑫, 时晓厚, 沈云, 等. 5G工业互联网的边缘计算技术架构与应用. 电子技术应用, 2019, 45(12): 25-28, 33.
URL
|
|
YANG X, SHI X H, SHEN Y, et al. Edge computing applications and technical architecture of 5G industrial Internet. Application of Electronic Technique, 2019, 45(12): 25-28, 33.
URL
|
3 |
冯怡, 李鑫, 江奎, 等. 物联网发展逻辑与商业模式创新. 通信企业管理, 2020,(5): 36- 40.
URL
|
|
FENG Y, LI X, JIANG K, et al. Development logic of Internet of Things and innovation of business model. C-Enterprise Management, 2020,(5): 36- 40.
URL
|
4 |
DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional Transformers for language understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Philadelphia, USA: Association for Computational Linguistics, 2019: 4176-4186.
|
5 |
高志强, 鲁晓阳, 张荣荣. 边缘智能: 关键技术与落地实践. 自动化博览, 2021, 38(10): 7.
URL
|
|
GAO Z Q, LU X Y, ZHANG R R. Edge intelligence: key technologies and landing practice. Automation Panorama, 2021, 38(10): 7.
URL
|
6 |
牛鑫, 吕现伟, 余辰. 边缘智能: 现状与挑战. 武汉大学学报(理学版), 2023, 69(2): 270- 282.
URL
|
|
NIU X, LÜ X W, YU C. Edge intelligence: state-of-the-art and challenges. Journal of Wuhan University (Natural Science Edition), 2023, 69(2): 270- 282.
URL
|
7 |
洪洲. 卷积神经网络的结构搜索方法研究[D]. 无锡: 江南大学, 2021.
|
|
HONG Z. Research on convolutional neural network architecture search[D]. Wuxi: Jiangnan University, 2021. (in Chinese)
|
8 |
IANDOLA F N, HAN S, MOSKEWICZ M W, et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and < 0.5 MB model size[EB/OL]. [2023-09-10]. https://arxiv.org/abs/1602.07360.
|
9 |
HOWARD A G, ZHU M L, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[EB/OL]. [2023-09-10]. https://arxiv.org/abs/1704.04861.
|
10 |
ZHANG X Y, ZHOU X Y, LIN M X, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 6848-6856.
|
11 |
葛道辉, 李洪升, 张亮, 等. 轻量级神经网络架构综述. 软件学报, 2020, 31(9): 2627- 2653.
URL
|
|
GE D H, LI H S, ZHANG L, et al. Survey of lightweight neural network. Journal of Software, 2020, 31(9): 2627- 2653.
URL
|
12 |
罗人千. 高效神经网络结构搜索算法及应用[D]. 合肥: 中国科学技术大学, 2021.
|
|
LUO R Q. Efficient neural architecture search: algorithms and applications[D]. Hefei: University of Science and Technology of China, 2021. (in Chinese)
|
13 |
YING C, KLEIN A, REAL E, et al. NAS-Bench-101: towards reproducible neural architecture search[C]//Proceedings of the International Conference on Machine Learning (ICML). Long Beach, USA: PMLR, 2019: 7105-7114.
|
14 |
|
15 |
|
16 |
ZOPH B, VASUDEVAN V, SHLENS J, et al. Learning transferable architectures for scalable image recognition[C]//Proceedings of 2018 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2018: 8697-8710.
|
17 |
|
18 |
XU Y, XIE L, ZHANG X, et al. PC-DARTS: partial channel connections for memory-efficient architecture search[EB/OL]. [2023-09-10]. https://arxiv.org/abs/1907.05737.
|
19 |
LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 1998, 86(11): 2278- 2324.
doi: 10.1109/5.726791
|
20 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2016: 770-778.
|
21 |
WAN A, DAI X L, ZHANG P Z, et al. FBNetV2: differentiable neural architecture search for spatial and channel dimensions[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2020: 12965-12974.
|
22 |
清华大学. 轻量级神经网络模型训练方法、系统、装置及存储介质: CN202111080711.0[P]. 2021-12-17.
|
|
Tsinghua University. Lightweight neural networks model training method, system, device and storage medium: CN202111080711.0[P]. 2021-12-17. (in Chinese)
|
23 |
卫佩宏. 边缘云中基于深度强化学习的任务调度及虚拟网络功能部署研究[D]. 重庆: 重庆理工大学, 2022.
|
|
WEI P H. Task scheduling and virtual network function placement based on deep reinforcement learning in edge cloud[D]. Chongqing: Chongqing University of Technology, 2022. (in Chinese)
|
24 |
LU H D, DU M, HE X M, et al. An adaptive neural architecture search design for collaborative edge-cloud computing. IEEE Network, 2021, 35(5): 83- 89.
doi: 10.1109/MNET.201.2100069
|
25 |
梅雅鑫. 阿里云: 打造三层边缘计算能力构建云边端协同的开放生态. 通信世界, 2019,(11): 44.
URL
|
|
MEI Y X. Alibaba cloud: building a three-tier edge computing capability and building an open ecology of cloud edge collaboration. Communications World, 2019,(11): 44.
URL
|
26 |
MICHEL G, NIKOLENTZOS G, LUTZEYER J F, et al. Path neural networks: expressive and accurate graph neural networks[C]//Proceedings of International Conference on Machine Learning(ICML). Honolulu, USA: PMLR, 2023: 24737-24755.
|
27 |
WANG Y L, SU H, ZHANG B, et al. Interpret neural networks by identifying critical data routing paths[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 8906-8914.
|
28 |
|