1 |
陈广锋, 管观洋, 魏鑫. 基于机器视觉的冲压件表面缺陷在线检测研究. 激光与光电子学进展, 2018, 55 (1): 341- 347.
|
|
CHEN G F, GUAN G Y, WEI X. Online stamping parts surface defects detection based on machine vision. Laser & Optoelectronics Progress, 2018, 55 (1): 341- 347.
|
2 |
李丽娟, 徐尚龙, 秦杰. 基于图像处理技术的五金件表面缺陷检测研究. 工程设计学报, 2011, 18 (2): 134- 138.
|
|
LI L J, XU S L, QIN J. Research on hardware surface defects detection based on image processing techniques. Chinese Journal of Engineering Design, 2011, 18 (2): 134- 138.
|
3 |
吕宁, 肖剑, 高健, 等. 基于改进MRF的冲压件轮廓缺陷图像分割算法. 锻压技术, 2022, 47 (4): 101- 109.
|
|
LÜ N, XIAO J, GAO J, et al. Image segmentation algorithm on contour defects for stamping part based on improved MRF. Forging & Stamping Technology, 2022, 47 (4): 101- 109.
|
4 |
YU Y, WANG C P, FU Q, et al. Techniques and challenges of image segmentation: a review. Electronics, 2023, 12 (5): 1199.
doi: 10.3390/electronics12051199
|
5 |
张翡, 范虹. 基于模糊C均值聚类的医学图像分割研究. 计算机工程与应用, 2014, 50 (4): 144- 151.
|
|
ZHANG F, FAN H. Research on medical image segmentation based on fuzzy C-means clustering. Computer Engineering and Applications, 2014, 50 (4): 144- 151.
|
6 |
XIAO L Y, QI H, FAN C D, et al. Energy noise detection FCM for breast tumor image segmentation. IEEE Access, 2020, 8, 62895- 62904.
doi: 10.1109/ACCESS.2020.2984392
|
7 |
QI Y S, ZHANG A X, WANG H, et al. An efficient FCM-based method for image refinement segmentation. The Visual Computer, 2022, 38 (7): 2499- 2514.
doi: 10.1007/s00371-021-02126-1
|
8 |
AHMED M N, YAMANY S M, MOHAMED N, et al. A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data. IEEE Transactions on Medical Imaging, 2002, 21 (3): 193- 199.
doi: 10.1109/42.996338
|
9 |
KRINIDIS S, CHATZIS V. A robust fuzzy local information C-means clustering algorithm. IEEE Transactions on Image Processing, 2010, 19 (5): 1328- 1337.
doi: 10.1109/TIP.2010.2040763
|
10 |
王燕, 亓祥惠, 段亚西. 基于马尔科夫随机场的改进FCM图像分割算法. 计算机工程与应用, 2020, 56 (4): 197- 201.
|
|
WANG Y, QI X H, DUAN Y X. Improved FCM image segmentation algorithm based on Markov random field. Computer Engineering and Applications, 2020, 56 (4): 197- 201.
|
11 |
MOHAMMDIAN-KHOSHNOUD M, SOLTANIAN A R, DEHGHAN A, et al. Optimization of Fuzzy C-Means (FCM) clustering in cytology image segmentation using the gray wolf algorithm. BMC Molecular and Cell Biology, 2022, 23 (1): 9.
doi: 10.1186/s12860-022-00408-7
|
12 |
巫笠平, 陈斌, 马玉良, 等. 基于PSO-FCM的标记控制分水岭PCOS超声图像分割. 传感技术学报, 2023, 36 (3): 411- 418.
|
|
WU L P, CHEN B, MA Y L, et al. PCOS ultrasound image segmentation based on marker-controled watershed optimized by PSO-FCM. Chinese Journal of Sensors and Actuators, 2023, 36 (3): 411- 418.
|
13 |
谷学静, 杨宝上, 刘秋月. 基于高斯滤波和AKAZE-LATCH的图像匹配算法. 半导体光电, 2023, 44 (4): 639- 644.
|
|
GU X J, YANG B S, LIU Q Y. Image matching algorithm based on Gaussian filtering and AKAZE-LATCH. Semiconductor Optoelectronics, 2023, 44 (4): 639- 644.
|
14 |
BUADES A, COLL B, MOREL J M. A non-local algorithm for image denoising[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2005: 60-65.
|
15 |
KINGE S, RANI B S, SUTAONE M. Restored texture segmentation using Markov random fields. Mathematical Biosciences and Engineering, 2023, 20 (6): 10063- 10089.
doi: 10.3934/mbe.2023442
|
16 |
GEMAN S, GEMAN D. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1984, 6 (6): 721- 741.
|
17 |
侯一民, 郭雷. 一种基于马尔可夫随机场的SAR图像分割新方法. 电子与信息学报, 2007, 29 (5): 1069- 1072.
|
|
HOU Y M, GUO L. A novel SAR image segmentation method based on Markov random field. Journal of Electronics & Information Technology, 2007, 29 (5): 1069- 1072.
|
18 |
兰红, 黄敏. 融合KNN优化的密度峰值和FCM聚类算法. 计算机工程与应用, 2021, 57 (9): 81- 88.
|
|
LAN H, HUANG M. Fusion of KNN optimized density peaks and FCM clustering algorithm. Computer Engineering and Applications, 2021, 57 (9): 81- 88.
|
19 |
王振武, 何关瑶. 核函数选择方法研究. 湖南大学学报(自然科学版), 2018, 45 (10): 155- 160.
|
|
WANG Z W, HE G Y. Research on selection method of kernel function. Journal of Hunan University (Natural Sciences), 2018, 45 (10): 155- 160.
|
20 |
张慧哲, 王坚. 基于初始聚类中心选取的改进FCM聚类算法. 计算机科学, 2009, 36 (6): 206- 209.
|
|
ZHANG H Z, WANG J. Improved fuzzy C means clustering algorithm based on selecting initial clustering centers. Computer Science, 2009, 36 (6): 206- 209.
|
21 |
CHHABRA A, HUSSIEN A G, HASHIM F A. Improved bald eagle search algorithm for global optimization and feature selection. Alexandria Engineering Journal, 2023, 68, 141- 180.
doi: 10.1016/j.aej.2022.12.045
|
22 |
卢梦蝶, 鲁海燕, 侯新宇, 等. 融合柯西变异的鸟群与算术混合优化算法. 计算机工程与应用, 2023, 59 (14): 62- 75.
|
|
LU M D, LU H Y, HOU X Y, et al. Hybrid algorithm of bird swarm algorithm and arithmetic optimization algorithm based on cauchy mutation. Computer Engineering and Applications, 2023, 59 (14): 62- 75.
|
23 |
BEZDEK J C. Cluster validity with fuzzy sets. Journal of Cybernetics, 1973, 3 (3): 58- 73.
doi: 10.1080/01969727308546047
|
24 |
|
25 |
VERSCHUERE B, VAN GHESEL GROTHE S, WALDORP L, et al. What features of psychopathy might be central? A network analysis of the Psychopathy Checklist-Revised (PCL-R) in three large samples. Journal of Abnormal Psychology, 2018, 127 (1): 51- 65.
doi: 10.1037/abn0000315
|
26 |
王燕, 何宏科. 基于邻域信息的改进模糊c均值脑MRI分割. 计算机应用, 2020, 40 (4): 1196- 1201.
|
|
WANG Y, HE H K. Improved fuzzy c-means MRI segmentation based on neighborhood information. Journal of Computer Applications, 2020, 40 (4): 1196- 1201.
|
27 |
陈刚, 林东, 陈飞, 等. 基于Logistic回归麻雀算法的图像分割. 北京航空航天大学学报, 2023, 49 (3): 636- 646.
|
|
CHEN G, LIN D, CHEN F, et al. Image segmentation based on Logistic regression sparrow algorithm. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49 (3): 636- 646.
|
28 |
付雪, 朱良宽, 黄建平, 等. 基于改进北方苍鹰优化算法的多阈值图像分割. 计算机工程, 2023, 49 (7): 232- 241.
URL
|
|
FU X, ZHU L K, HUANG J P, et al. Multi-threshold image segmentation based on improved northern goshawk optimization algorithm. Computer Engineering, 2023, 49 (7): 232- 241.
URL
|
29 |
WUTTISARNWATTANA P, AUEPHANWIRIYAKUL S. Spleen tissue segmentation algorithm for cryo-imaging data. Journal of Digital Imaging, 2023, 36 (2): 588- 602.
|