1 |
PÖS O , RADVANSZKY J , BUGLYÓ G , et al. DNA copy number variation: main characteristics, evolutionary significance, and pathological aspects. Biomedical Journal, 2021, 44 (5): 548- 559.
doi: 10.1016/j.bj.2021.02.003
|
2 |
YANG X , SONG Z , WU C K , et al. Constructing a database for the relations between CNV and human genetic diseases via systematic text mining. BMC Bioinformatics, 2018, 19, 125- 134.
doi: 10.1186/s12859-018-2113-6
|
3 |
WANG X Z , YU G X , YAN Z M , et al. Lung cancer subtype diagnosis by fusing image-genomics data and hybrid deep networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2023, 20 (1): 512- 523.
doi: 10.1109/TCBB.2021.3132292
|
4 |
黄体浩, 李俊青, 赵海勇. 遗传算法优化的BP神经网络拷贝数变异检测. 计算机工程与应用, 2022, 58 (1): 274- 281.
|
|
HUANG T H , LI J Q , ZHAO H Y . Copy number variation detection of BP neural network based on genetic algorithm optimized. Computer Engineering and Applications, 2022, 58 (1): 274- 281.
|
5 |
CHEN X , WANG J , YU G , et al. Cooperative driver module identification based on single cell data. Scientia Sinica Informationis, 2023, 53 (2): 250- 265.
doi: 10.1360/SSI-2022-0057
|
6 |
METZKER M L . Sequencing technologies-the next generation (with notes). Nature Reviews Genetics, 2009, 11 (1): 31- 46.
URL
|
7 |
ABYZOV A , URBAN A E , SNYDER M , et al. CNVnator: an approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing. Genome Research, 2011, 21 (6): 974- 984.
doi: 10.1101/gr.114876.110
|
8 |
PRASHANTHI D , SRIHARSHA V , NITA P , et al. iCopyDAV: integrated platform for copy number variations-detection, annotation and visualization. Plos One, 2018, 13 (4): 1- 37.
URL
|
9 |
YUAN X G , BAI J , ZHANG J Y , et al. CONDEL: detecting copy number variation and genotyping deletion zygosity from single tumor samples using sequence data. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2020, 17 (4): 1141- 1153.
doi: 10.1109/TCBB.2018.2883333
|
10 |
MILLER C A , HAMPTON O , COARFA C , et al. ReadDepth: a parallel R package for detecting copy number alterations from short sequencing reads. Plos One, 2011, 6 (1): 1- 7.
URL
|
11 |
CHEN Y , ZHAO L , WANG Y , et al. SeqCNV: a novel method for identification of copy number variations in targeted next-generation sequencing data. BMC Bioinformatics, 2017, 18 (1): 1- 9.
doi: 10.1186/s12859-016-1414-x
|
12 |
YUAN X G , LI J P , BAI J , et al. A local outlier factor-based detection of copy number variations from NGS data. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, 18 (5): 1811- 1820.
doi: 10.1109/TCBB.2019.2961886
|
13 |
YUAN X G , YU J , XI J N , et al. CNV_IFTV: an isolation forest and total variation-based detection of CNVs from short-read sequencing data. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, 18 (2): 539- 549.
doi: 10.1109/TCBB.2019.2920889
|
14 |
张丽娟, 李舟军. 微阵列数据癌症分类问题中的基因选择. 计算机研究与发展, 2009, 46 (5): 794- 802.
|
|
ZHANG L J , LI Z J . Gene selection for cancer classification in microarray data. Computer Research and Development, 2009, 46 (5): 794- 802.
|
15 |
钟诚, 孙辉. 高错误率长序列基因组数据敏感序列识别并行算法. 通信学报, 2023, 44 (2): 160- 171.
|
|
ZHONG C , SUN H . A parallel algorithm for identifying sensitive sequences in high error rate long sequence genomic data. Journal of Communications, 2023, 44 (2): 160- 171.
|
16 |
刘志明, 冉昊. 云计算下的基因测序数据并行化生成方法. 计算机仿真, 2022, 39 (2): 246- 250.
doi: 10.3969/j.issn.1006-9348.2022.02.047
|
|
LIU Z M , RAN H . Parallel generation of gene sequencing data in cloud computing. Computer Simulation, 2022, 39 (2): 246- 250.
doi: 10.3969/j.issn.1006-9348.2022.02.047
|
17 |
KALIA K , GUPTA N . Analysis of hadoop MapReduce scheduling in heterogeneous environment. Ain Shams Engineering Journal, 2021, 12 (1): 1101- 1110.
doi: 10.1016/j.asej.2020.06.009
|
18 |
马生俊, 陈旺虎, 郭宏乐, 等. Hadoop集群中影响应用性能的因素分析. 小型微型计算机系统, 2018, 39 (4): 719- 724.
doi: 10.3969/j.issn.1000-1220.2018.04.018
|
|
MA S J , CHEN W H , GUO H L , et al. Analysis of factors affecting application the performance in Hadoop clusters. Journal of Chinese Computer Systems, 2018, 39 (4): 719- 724.
doi: 10.3969/j.issn.1000-1220.2018.04.018
|
19 |
于建涛, 刘圣东, 赖灵伟, 等. 基于Spark的转录组大数据并行处理方法. 计算机应用研究, 2020 (S2): 176- 180.
|
|
YU J T , LIU S D , LAI L W , et al. Parallel processing method for transcriptome big data based on spark. Computer Application Research, 2020 (S2): 176- 180.
|
20 |
MENG Z, LI J H, ZHOU Y C, et al. bCloudBLAST: an efficient mapreduce program for bioinformatics applications[C]//Proceedings of the IEEE International Conference on Biomedical Engineering& Informatics. Washington D.C., USA: IEEE Press, 2011: 2072-2076.
|
21 |
SCHATZ M C . CloudBurst: highly sensitive read mapping with MapReduce. Bioinformatics, 2009, 25 (11): 1363- 1369.
doi: 10.1093/bioinformatics/btp236
|
22 |
|
23 |
王谟瀚, 翟俊海, 齐家兴. 基于MapReduce和Spark的大规模压缩模糊K-近邻算法. 计算机工程, 2020, 46 (11): 139- 147.
doi: 10.19678/j.issn.1000-3428.0055670
|
|
WANG M H , ZHAI J H , QI J X . Large-scale condensed fuzzy K-nearest neighbor algorithm based on MapReduce and Spark. Computer Engineering, 2020, 46 (11): 139- 147.
doi: 10.19678/j.issn.1000-3428.0055670
|
24 |
AJAYKUMAR A , YANG J J . Integrative comparison of Burrows-Wheeler Transform-based mapping algorithm with de bruijn graph for identification of lung/liver cancer-specific gene. Journal of Microbiology and Biotechnology, 2022, 32 (2): 149- 159.
doi: 10.4014/jmb.2110.10017
|
25 |
张文捷, 李大磊. PCR微流控芯片温度控制仿真研究. 计算机仿真, 2023, 40 (3): 307- 310.
doi: 10.3969/j.issn.1006-9348.2023.03.058
|
|
ZHANG W J , LI D . Study on temperature control simulation of PCR microfluidic chip. Computer Simulation, 2023, 40 (3): 307- 310.
doi: 10.3969/j.issn.1006-9348.2023.03.058
|
26 |
ASSAL N , LIN M . PCR procedures to amplify GC-rich DNA sequences of Mycobacterium bovis. Journal of Microbiological Methods, 2021, 181, 1- 7.
|
27 |
ZHANG Z, LIU Y, LI G, et al. PocaCNV: a tool to detect copy number variants from population-scale genome sequencing data[C]//Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine. Washington D.C., USA: IEEE Press, 2021: 1912-1918.
|
28 |
YOON S , XUAN Z , MAKAROV V , et al. Sensitive and accurate detection of copy number variants using read depth of coverage. Genome Research, 2009, 19 (9): 1586- 1592.
doi: 10.1101/gr.092981.109
|
29 |
YUAN X G , ZHANG J Y , YANG L Y . IntSIM: an integrated simulator of next-generation sequencing data. IEEE Transactions on Biomedical Engineering, 2017, 64 (2): 441- 451.
doi: 10.1109/TBME.2016.2560939
|
30 |
GUO Y , WANG S Z , YUAN X G . HBOS-CNV: a new approach to detect copy number variations from next-generation sequencing data. Frontiers in Genetics, 2021, 12, 881- 891.
URL
|