1 |
黄琰, 李岩, 俞建成, 等. AUV智能化现状与发展趋势. 机器人, 2020, 42 (2): 215- 231.
|
|
HUANG D , LI Y , YU J C , et al. State-of-the-art and development trends of AUV intelligence. Robot, 2020, 42 (2): 215- 231.
|
2 |
ZHANG Y , LI L , LIN H C , et al. Development of path planning approach using improved A-star algorithm in AGV system. Journal of Internet Technology, 2019, 20 (3): 915- 924.
|
3 |
MASHAYEKHI R , IDRIS M Y I , ANISI M H , et al. Hybrid RRT: a semi-dual-tree RRT-based motion planner. IEEE Access, 2020, 8, 18658- 18668.
doi: 10.1109/ACCESS.2020.2968471
|
4 |
YANG W L , WU P , ZHOU X Q , et al. Improved artificial potential field and dynamic window method for amphibious robot fish path planning. Applied Sciences, 2021, 11 (5): 2114.
doi: 10.3390/app11052114
|
5 |
詹京吴, 黄宜庆. 融合安全A*算法与动态窗口法的机器人路径规划. 计算机工程, 2022, 48 (9): 105-112, 120.
|
|
ZHAN J W , HUANG Y Q . Path planning of robotcombing safety A* algorithm and dynamic window approach. Computer Engineering, 2022, 48 (9): 105-112, 120.
|
6 |
KUMAR A , OJHA A . Experimental evaluation of certain pursuit and evasion schemes for wheeled mobile robots. International Journal of Automation and Computing, 2019, 16 (4): 491- 510.
doi: 10.1007/s11633-018-1151-x
|
7 |
FERIANI A , HOSSAIN E . Single and multi-agent deep reinforcement learning for AI-enabled wireless networks: a tutorial. IEEE Communications Surveys [WT《Times New Roman》] & Tutorials, 2021, 23 (2): 1226- 1252.
|
8 |
LUVIANO D , YU W . Continuous-time path planning for multi-agents with fuzzy reinforcement learning. Journal of Intelligent [WT《Times New Roman》] & Fuzzy Systems, 2017, 33 (1): 491- 501.
|
9 |
WATKINS C J C H , DAYAN P . Q-learning. Machine Learning, 1992, 8 (3): 279- 292.
|
10 |
李奇儒, 耿霞. 基于改进DQN算法的机器人路径规划. 计算机工程, 2023, 49 (12): 111- 120.
|
|
LI Q R , GENG X . Robot path planning based on improved DQN algorithm. Computer Engineering, 2023, 49 (12): 111- 120.
|
11 |
KANG Y T , CHEN W J , ZHU D Q , et al. Collision avoidance path planning in multi-ship encounter situations. Journal of Marine Science and Technology, 2021, 26 (4): 1026- 1037.
|
12 |
FAN J, WANG Z, XIE Y, et al. A theoretical analysis of deep Q-learning[C]//Proceedings of Learning for Dynamics and Control Conference. [S. l. ]: PMLR, 2020: 486-489.
|
13 |
|
14 |
KONDA V , TSITSIKLIS J . Actor-Critic algorithms. SIAM Journal on Control [WT《Times New Roman》] & Optimization, 1999, 42 (4): 1143- 1166.
|
15 |
HOU Y N, LIU L F, WEI Q, et al. A novel DDPG method with prioritized experience replay[C]//Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics. Washington D. C., USA: IEEE Press, 2017: 316-321.
|
16 |
TAI J J , PHANG S K , WONG F Y M . COAA*—an optimized obstacle avoidance and navigational algorithm for UAVs operating in partially observable 2D environments. Unmanned Systems, 2022, 10 (2): 159- 174.
|
17 |
|
18 |
YANG R W , XU J S , WANG X , et al. Parallel trajectory planning for shipborne autonomous collision avoidance system. Applied Ocean Research, 2019, 91, 101875.
|
19 |
HOCHREITER S , SCHMIDHUBER J . Long short-term memory. Neural Computation, 1997, 9 (8): 1735- 1780.
|
20 |
HEWAMALAGE H , BERGMEIR C , BANDARA K . Recurrent neural networks for time series forecasting: current status and future directions. International Journal of Forecasting, 2021, 37 (1): 388- 427.
|
21 |
LAKRETZ Y, KRUSZEWSKI G, DESBORDES T. The Emergence of Number and Syntax Units in LSTM Language Models[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1(Long and Short Papers). Stroudsburg, USA: Association forcomputational linguistics, 2019: 331-434.
|
22 |
MARTIN D , O'BYRNE J , CATES M E , et al. Statistical mechanics of active Ornstein-Uhlenbeck particles. Physical Review E, 2021, 103, 032607.
|
23 |
PUTERMAN M L. Markov decision processes[M]//BARNHART C, LAPORTE G. Handbooks in operations research and management science. Amsterdam, The Kingdom of the Netherlands: Elsevier, 1990: 331-434.
|
24 |
SHERSTINSKY A . Fundamentals of Recurrent Neural Network(RNN) and Long Short-Term Memory(LSTM) network. Physica D: Nonlinear Phenomena, 2020, 404, 132306.
|
25 |
刘国名, 李彩虹, 李永迪, 等. 基于改进PPO算法的机器人局部路径规划. 计算机工程, 2023, 49 (2): 119-126, 135.
|
|
LIU G M , LI C H , LI Y D , et al. Local path planning of robot based on improved PPO algorithm. Computer Engineering, 2023, 49 (2): 119-126, 135.
|
26 |
KERDPHOL T , WATANABE M , HONGESOMBUT K , et al. Self-adaptive virtual inertia control-based fuzzy logic to improve frequency stability of microgrid with high renewable penetration. IEEE Access, 2019, 7, 76071- 76083.
|
27 |
el HELOU M , SUSSTRUNK S . Blind universal Bayesian image denoising with Gaussian noise level learning. IEEE Transactions on Image Processing, 2020, 29, 4885- 4897.
|