1 |
BLEI D M , NG A Y , JORDAN M I . Latent Dirichlet allocation. Journal of Machine Learning Research, 2003, 3, 993- 1022.
|
2 |
|
3 |
DIENG A B , RUIZ F J R , BLEI D M . Topic modeling in embedding spaces. Transactions of the Association for Computational Linguistics, 2020, 8, 439- 453.
doi: 10.1162/tacl_a_00325
|
4 |
DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[EB/OL]. [2023-10-05]. https://arxiv.org/abs/1810.04805.
|
5 |
|
6 |
王宇晗, 林民, 李艳玲, 等. 基于BERT的嵌入式文本主题模型研究. 计算机工程与应用, 2023, 59 (1): 169- 179.
|
|
WANG Y H , LIN M , LI Y L , et al. Research on embedded text topic model based on BERT. Computer Engineering and Applications, 2023, 59 (1): 169- 179.
|
7 |
覃俊, 刘璐, 刘晶, 等. 基于BERT与主题模型联合增强的长文档检索模型. 中南民族大学学报(自然科学版), 2023, 42 (4): 469- 476.
|
|
QIN J , LIU L , LIU J , et al. Long document retrieval model based on the joint enhancement of BERT and topic model. Journal of South-Central Minzu University (Natural Science Edition), 2023, 42 (4): 469- 476.
|
8 |
张明芳, 余正涛, 郭军军, 等. 联合罪名预测的涉案新闻重叠实体关系抽取. 南京理工大学学报, 2021, 45 (1): 46- 55.
|
|
ZHANG M F , YU Z T , GUO J J , et al. Overlapping entity relationship extraction of case-involved news through jointing crime prediction. Journal of Nanjing University of Science and Technology, 2021, 45 (1): 46- 55.
|
9 |
毛存礼, 梁昊远, 余正涛, 等. 基于神经自回归分布估计的涉案新闻主题模型构建方法. 中文信息学报, 2021, 35 (2): 89- 98.
|
|
MAO C L , LIANG H Y , YU Z T , et al. Topic model of judicial news based on neural autoregressive distribution estimator. Journal of Chinese Information Processing, 2021, 35 (2): 89- 98.
|
10 |
韩鹏宇, 高盛祥, 余正涛, 等. 基于案件要素指导的涉案舆情新闻文本摘要方法. 中文信息学报, 2020, 34 (5): 56-63, 73.
doi: 10.3969/j.issn.1003-0077.2020.05.009
|
|
HAN P Y , GAO S X , YU Z T , et al. Case-involved public opinion news summarization with case elements guidance. Journal of Chinese Information Processing, 2020, 34 (5): 56-63, 73.
doi: 10.3969/j.issn.1003-0077.2020.05.009
|
11 |
LIU Y, LAPATA M. Text summarization with pretrained encoders[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. [S. l.]: ACL, 2019: 3730-3740.
|
12 |
|
13 |
STEVENS K, KEGELMEYER P, ANDRZEJEWSKI D, et al. Exploring topic coherence over many models and many topics[C]//Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. New York, USA: ACM Press, 2012: 952-961.
|
14 |
RÖDER M, BOTH A, HINNEBURG A, et al. Exploring the space of topic coherence measures[C]//Proceedings of the 8th ACM International Conference on Web Search and Data Mining. New York, USA: ACM Press, 2015: 399-408.
|
15 |
MIMNO D, WALLACH H M, TALLEY E, et al. Optimizing semantic coherence in topic models[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing. New York, USA: ACM Press, 2011: 262-272.
|
16 |
|
17 |
YANG Z L, DAI Z H, YANG Y M, et al. XLNet: generalized autoregressive pretraining for language understanding[EB/OL]. [2023-10-05]. https://arxiv.org/abs/1906.08237.
|
18 |
HEIDARI M, JONES J H. Using BERT to extract topic-independent sentiment features for social media bot detection[C]// Proceedings of the 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference. Washington D.C., USA: IEEE Press, 2020: 542-547.
|
19 |
雷明珠, 邵新慧. 短文本分类模型的优化及应用. 计算机应用研究, 2021, 38 (6): 1775- 1779.
|
|
LEI M Z , SHAO X H . Optimization and application of short text classification model. Application Research of Computers, 2021, 38 (6): 1775- 1779.
|
20 |
|
21 |
SALTON G , WONG A , YANG C S . A vector space model for automatic indexing. Communications of the ACM, 1975, 18 (11): 613- 620.
doi: 10.1145/361219.361220
|
22 |
GUO C H , LU M L , WEI W . An improved LDA topic modeling method based on partition for medium and long texts. Annals of Data Science, 2021, 8 (2): 331- 344.
doi: 10.1007/s40745-019-00218-3
|
23 |
|
24 |
|
25 |
|
26 |
CHANGPINYO S, SHARMA P, DING N, et al. Conceptual 12M: pushing web-scale image-text pre-training to recognize long-tail visual concepts[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2021: 3558-3568.
|
27 |
LI W L , JIN B , QUAN Y . Review of research on text sentiment analysis based on deep learning. OALib, 2020, 7 (3): 1- 8.
|
28 |
薛琪, 孟祥福, 张峰, 等. HLMGAN: 分层学习的多奖励文本生成对抗网络. 云南大学学报(自然科学版), 2022, 44 (1): 64- 72.
|