1 |
ADIBHATLA V A , CHIH H C , HSU C C , et al. Applying deep learning to defect detection in printed circuit boards via a newest model of you-only-look-once. Mathematical Biosciences and Engineering, 2021, 18 (4): 4411- 4428.
doi: 10.3934/mbe.2021223
|
2 |
FEL J T , ELLIS C T , TURK-BROWNE N B . Automated and manual segmentation of the hippocampus in human infants. Developmental Cognitive Neuroscience, 2023, 60, 101203.
doi: 10.1016/j.dcn.2023.101203
|
3 |
HARRISON K , PULLEN H , WELSH C , et al. Machine learning for auto-segmentation in radiotherapy planning. Clinical Oncology, 2022, 34 (2): 74- 88.
doi: 10.1016/j.clon.2021.12.003
|
4 |
LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2015: 3431-3440.
URL
|
5 |
CHEN L C, ZHU Y K, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[EB/OL]. [2023-10-05]. https://arxiv.org/abs/1802.02611.
|
6 |
|
7 |
DOU Z W , YE D , WANG B Y . AutoSegEdge: searching for the edge device real-time semantic segmentation based on multi-task learning. Image and Vision Computing, 2023, 136, 104719.
doi: 10.1016/j.imavis.2023.104719
|
8 |
PRISACARIU V A , REID I . 3D hand tracking for human computer interaction. Image and Vision Computing, 2012, 30 (3): 236- 250.
doi: 10.1016/j.imavis.2012.01.003
|
9 |
ZAITOUN N M , AQEL M J . Survey on image segmentation techniques. Procedia Computer Science, 2015, 65, 797- 806.
doi: 10.1016/j.procs.2015.09.027
|
10 |
URL
|
11 |
景庄伟, 管海燕, 彭代峰, 等. 基于深度神经网络的图像语义分割研究综述. 计算机工程, 2020, 46 (10): 1- 17.
doi: 10.3778/j.issn.1002-8331.2001-0320
|
|
JING Z W , GUAN H Y , PENG D F , et al. Survey of research in image semantic segmentation based on deep neural network. Computer Engineering, 2020, 46 (10): 1- 17.
doi: 10.3778/j.issn.1002-8331.2001-0320
|
12 |
URL
|
13 |
URL
|
14 |
ZHANG G, LU X, TAN J R, et al. RefineMask: towards high-quality instance segmentation with fine-grained features[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2021: 6861-6869.
URL
|
15 |
|
16 |
WANG W G , LAI Q X , FU H Z , et al. Salient object detection in the deep learning era: an in-depth survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44 (6): 3239- 3259.
doi: 10.1109/TPAMI.2021.3051099
|
17 |
ZHAO Q J , SHENG T , WANG Y T , et al. M2Det: a single-shot object detector based on multi-level feature pyramid network. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33 (1): 9259- 9266.
doi: 10.1609/aaai.v33i01.33019259
|
18 |
DENG Z J, HU X W, ZHU L, et al. R3Net: recurrent residual refinement network for saliency detection[C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence. Washington D.C., USA: IEEE Press, 2018: 684-690.
URL
|
19 |
WAN W K, GENG H R, LIU Y, et al. UniDexGrasp++: improving dexterous grasping policy learning via geometry-aware curriculum and iterative generalist-specialist learning[EB/OL]. [2023-10-05]. http://arxiv.org/abs/2304.00464v2.
URL
|
20 |
|
21 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2016: 770-778.
URL
|
22 |
URL
|
23 |
ZHAO Z R, XIA C Q, XIE C X, et al. Complementary trilateral decoder for fast and accurate salient object detection[C]// Proceedings of the 29th ACM International Conference on Multimedia. New York, USA: ACM Press, 2021: 4967-4975.
URL
|
24 |
ZHOU X F , FANG H , LIU Z , et al. Dense attention-guided cascaded network for salient object detection of strip steel surface defects. IEEE Transactions on Instrumentation Measurement, 2022, 71, 3132082.
doi: 10.1109/TIM.2021.3132082
|
25 |
URL
|
26 |
ZHENG P , FU H , FAN D P , et al. GCoNet+: a stronger group collaborative co-salient object detector. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45 (9): 10929- 10946.
doi: 10.1109/TPAMI.2023.3264571
|
27 |
ZHOU X , SHEN K , WENG L , et al. Edge-guided recurrent positioning network for salient object detection in optical remote sensing images. IEEE Transactions on Cybernetics, 2023, 53 (1): 539- 552.
doi: 10.1109/TCYB.2022.3163152
|
28 |
LI G , LIU Z , ZENG D , et al. Adjacent context coordination network for salient object detection in optical remote sensing images. IEEE Transactions on Cybernetics, 2023, 53 (1): 526- 538.
doi: 10.1109/TCYB.2022.3162945
|
29 |
PIAO Y R, WANG J, ZHANG M, et al. MFNet: multi-filter directive network for weakly supervised salient object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Washington D.C., USA: IEEE Press, 2021: 4136-4145.
URL
|
30 |
SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2018: 4510-4520.
URL
|
31 |
LIN Y H, SUN H, LIU N Z, et al. A lightweight multi-scale context network for salient object detection in optical remote sensing images[C]//Proceedings of the 26th International Conference on Pattern Recognition. Washington D.C., USA: IEEE Press, 2022: 238-244.
URL
|
32 |
GUO C L, SZEMENYEI M, YI Y G, et al. SA-UNet: spatial attention U-Net for retinal vessel segmentation[C]//Proceedings of the 25th International Conference on Pattern Recognition. Washington D.C., USA: IEEE Press, 2021: 1236-1242.
|
33 |
QIN X B , ZHANG Z C , HUANG C Y , et al. U2Net: going deeper with nested U-structure for salient object detection. Pattern Recognition, 2020, 106, 107404.
doi: 10.1016/j.patcog.2020.107404
|
34 |
LI G Y , BAI Z , LIU Z , et al. Salient object detection in optical remote sensing images driven by transformer. IEEE Transactions on Image Processing, 2023, 32, 5257- 5269.
doi: 10.1109/TIP.2023.3314285
|
35 |
CHEN J N, LU Y Y, YU Q H, et al. TransUNet: transformers make strong encoders for medical image segmentation[EB/OL]. [2023-10-05]. http://arxiv.org/abs/2102.04306v1.
URL
|
36 |
XU G A , LI J C , GAO G W , et al. Lightweight real-time semantic segmentation network with efficient transformer and CNN. IEEE Transactions on Intelligent Transportation Systems, 2023, 24 (12): 15897- 15906.
doi: 10.1109/TITS.2023.3248089
|