1 |
HE H B , GARCIA E A . Learning from imbalanced data. IEEE Transactions on Knowledge & Data Engineering, 2009, 21 (9): 1263- 1284.
|
2 |
赵楠, 张小芳, 张利军. 不平衡数据分类研究综述. 计算机科学, 2018, 45 (S1): 22-27, 57.
|
|
ZHAO N , ZHANG X F , ZHANG L J . Overview of imbalanced data classification. Computer Science, 2018, 45 (S1): 22-27, 57.
|
3 |
YUAN X H , XIE L J , ABOUELENIEN M . A regularized ensemble framework of deep learning for cancer detection from multi-class, imbalanced training data. Pattern Recognition, 2018, 77, 160- 172.
doi: 10.1016/j.patcog.2017.12.017
|
4 |
YANG W J. Based on a semi-supervised fuzzy clustering and sample selection attribute reduction of the intrusion detection[C]//Proceedings of Conference on Mathematical, Computational and Statistical Sciences and Engineering. Washington D.C., USA: IEEE Press, 2016: 193-197.
|
5 |
CATENI S , COLLA V , VANNUCCI M . A method for resampling imbalanced datasets in binary classification tasks for real-world problems. Neurocomputing, 2014, 135, 32- 47.
doi: 10.1016/j.neucom.2013.05.059
|
6 |
WANG S , YAO X . Multiclass imbalance problems: analysis and potential solutions. IEEE Transactions on Systems, Man, and Cybernetics. Part B(Cybernetics), 2012, 42 (4): 1119- 1130.
doi: 10.1109/TSMCB.2012.2187280
|
7 |
刘定祥, 乔少杰, 张永清, 等. 不平衡分类的数据采样方法综述. 重庆理工大学学报(自然科学), 2019, 33 (7): 102- 112.
|
|
LIU D X , QIAO S J , ZHANG Y Q , et al. A survey on data sampling methods in imbalance classification. Journal of Chongqing University of Technology (Natural Science), 2019, 33 (7): 102- 112.
|
8 |
李昂, 韩萌, 穆栋梁, 等. 多类不平衡数据分类方法综述. 计算机应用研究, 2022, 39 (12): 3534- 3545.
|
|
LI A , HAN M , MU D L , et al. Survey of multi-class imbalanced data classification methods. Application Research of Computers, 2022, 39 (12): 3534- 3545.
|
9 |
CHAWLA N V , BOWYER K W , HALL L O , et al. SMOTE: synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 2002, 16, 321- 357.
doi: 10.1613/jair.953
|
10 |
HAN H, WANG W Y, MAO B H. Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning[C]//Proceedings of the 2005 International Conference on Intelligent Computing. Berlin, Germany: Springer, 2005: 878-887.
|
11 |
HE H B, BAI Y, GARCIA E A, et al. ADASYN : adaptive synthetic sampling approach for imbalanced learning[C]//Proceedings of IEEE International Joint Conference on Neural Networks. Washington D. C., USA: IEEE Press, 2008: 1322-1328.
|
12 |
DOUZAS G , BACAO F , LAST F . Improving imbalanced learning through a heuristic oversampling method based on k-means and SMOTE. Information Sciences, 2018, 465, 1- 20.
doi: 10.1016/j.ins.2018.06.056
|
13 |
姜新盈, 王舒梵, 严涛. 基于层次密度聚类的去噪自适应混合采样. 计算机系统应用, 2022, 31 (10): 206- 210.
|
|
JIANG X Y , WANG S F , YAN T . Denoising and adaptive hybrid sampling based on hierarchical density clustering. Computer Systems and Applications, 2022, 31 (10): 206- 210.
|
14 |
韩明鸣, 郭虎升, 王文剑. 面向非平衡多分类问题的二次合成QSMOTE方法. 南京大学学报(自然科学), 2019, 55 (1): 1- 13.
|
|
HAN M M , GUO H S , WANG W J . Quadratic synthetic minority over-sampling technique for classification of multiclass imbalance problems. Journal of Nanjing University(Natural Science), 2019, 55 (1): 1- 13.
|
15 |
ZHU T F , LIN Y P , LIU Y H . Improving interpolation-based oversampling for imbalanced data learning. Knowledge-Based Systems, 2020, 187, 104826.
doi: 10.1016/j.knosys.2019.06.034
|
16 |
刘文英, 林亚林, 李克文, 等. 一种软件缺陷不平衡数据分类新方法. 山东科技大学学报(自然科学版), 2021, 40 (2): 84- 94.
|
|
LIU W Y , LI Y L , LI K W , et al. A novel unbalanced data classification method for software defects. Journal of Shandong University of Science and Technology (Natural Science), 2021, 40 (2): 84- 94.
|
17 |
李国和, 刘顺欣, 张予杰, 等. 面向分类模型学习的样本类别均衡化方法. 计算机应用与软件, 2022, 39 (10): 230- 237.
|
|
LI G H , LIU S X , ZHANG Y J , et al. Synthetic method of label-balancing samples for classifier learning. Computer Applications and Software, 2022, 39 (10): 230- 237.
|
18 |
高子寒, 宋燕. 基于边界增强和去噪的自适应双权重过采样方法研究. 智能计算机与应用, 2022, 12 (1): 58- 64.
|
|
GAO Z H , SONG Y . An adaptive double-weight enhanced boundary and denoising oversampling approach. Intelligent Computer and Applications, 2022, 12 (1): 58- 64.
|
19 |
贺作伟, 陶佳晴, 冷强奎, 等. 带有超长方体约束的少数类样本生成机制. 计算机应用研究, 2022, 39 (10): 3055- 3060.
|
|
HE Z W , TAO J Q , LENG Q K , et al. Generation mechanism for minority samples with hypercuboid constraints. Application Research of Computers, 2022, 39 (10): 3055- 3060.
|
20 |
贺永森, 陈江. 抛物线插值法用于液压机工艺曲线的研究. 锻压装备与制造技术, 2022, 57 (4): 68- 71.
|
|
HE Y S , CHEN J . Study on process curve of hydraulic press by use of parabolic interpolation. China Metalforming Equipment & Manufacturing Technology, 2022, 57 (4): 68- 71.
|
21 |
马兰, 井伟, 扈月松, 等. 两点抛物线插值提高雷达测距精度的研究. 火控雷达技术, 2020, 49 (4): 14-18, 26.
|
|
MA L , JING W , HU Y S , et al. Research on improving radar ranging accuracy by two-point parabolic interpolation. Fire Control Radar Technology, 2020, 49 (4): 14-18, 26.
|
22 |
董明刚, 姜振龙, 敬超. 基于海林格距离和SMOTE的多类不平衡学习算法. 计算机科学, 2020, 47 (1): 102- 109.
|
|
DONG M G , JIANG Z L , JING C . Multi-class imbalanced learning algorithm based on Hellinger distance and SMOTE algorithm. Computer Science, 2020, 47 (1): 102- 109.
|
23 |
吴煜, 杨爱萍, 章宦记, 等. 基于黎曼与巴氏距离的脑磁图信号分类方法. 计算机科学与探索, 2017, 11 (5): 776- 784.
|
|
WU Y , YANG A P , ZHANG H J , et al. MEG signals classification algorithm based on Riemann and Bhattacharyya distances. Journal of Frontiers of Computer Science and Technology, 2017, 11 (5): 776- 784.
|
24 |
李敏波, 董伟伟. 面向不平衡数据集的汽车零部件质量预测. 中国机械工程, 2022, 33 (1): 88- 96.
|
|
LI M B , DONG W W . Quality prediction of automotive parts for imbalanced datasets. China Mechanical Engineering, 2022, 33 (1): 88- 96.
|
25 |
|