| 1 |
SIEGEL R, MILLER K, FUCHS H, et al. Cancer statistics, 2022. CA. 506. Cancer Journal of Clinic, 2022, 72(7-33): 507.
|
| 2 |
何小双, 徐丽娜, 刘冬, 等. 基于年龄-时期-队列模型的2005-2016年中国老年人恶性肿瘤流行特征分析. 中华肿瘤防治杂志, 2023, 30(11): 631- 638.
|
|
HE X S, XU L N, LIU D, et al. Epidemiological characteristics of malignant tumors in the elderly in China from 2005 to 2016 based on age period cohort model. Chinese Journal of Cancer Prevention and Treatment, 2023, 30(11): 631- 638.
|
| 3 |
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a Cancer Journal for Clinicians, 2018, 68(6): 394- 424.
doi: 10.3322/caac.21492
|
| 4 |
傅强, 韩邦旻, 刘振湘, 等. 前列腺穿刺活检专家共识. 中华男科学杂志, 2022, 28(5): 462- 470.
|
|
FU Q, HAN B M, LIU Z X, et al. Expert consensus on prostate biopsy. National Journal of Andrology, 2022, 28(5): 462- 470.
|
| 5 |
谭振霖, 郭圣文. 基于关键点的超声图像与磁共振图像多分辨率离散优化配准方法. 生物医学工程学杂志, 2023, 40(2): 202-207, 216.
|
|
TAN Z L, GUO S W. Multiresolution discrete optimization registration method of ultrasound and magnetic resonance images based on key points. Journal of Biomedical Engineering, 2023, 40(2): 202-207, 216.
|
| 6 |
JACEWICZ M, GVNZEL K, RUD E, et al. Multicenter transperineal MRI-TRUS fusion guided outpatient clinic prostate biopsies under local anesthesia. Urologic Oncology: Seminars and Original Investigations, 2021, 39(7): 1- 7.
|
| 7 |
杨勇军, 贺显雅, 曾一鸣, 等. 电磁针尖引导局部麻醉经会阴前列腺多模态影像融合靶向穿刺学习曲线及经验体会. 临床泌尿外科杂志, 2024, 39(3): 235- 241.
|
|
YANG Y J, HE X Y, ZENG Y M, et al. Learning curve and experience of multi-mode image fusion targeted transperineal biopsy technique using electromagnetic needle tracking under local anaesthesia. Journal of Clinical Urology, 2024, 39(3): 235- 241.
|
| 8 |
FU Y B, LEI Y, WANG T H, et al. Deep learning in medical image registration: a review. Physics in Medicine and Biology, 2020, 65(20): 1- 27.
|
| 9 |
KLEIN S, STARING M, MURPHY K, et al. elastix: a toolbox for intensity-based medical image registration. IEEE Transactions on Medical Imaging, 2010, 29(1): 196- 205.
doi: 10.1109/TMI.2009.2035616
|
| 10 |
SHEN D G. Image registration by local histogram matching. Pattern Recognition, 2007, 40(4): 1161- 1172.
doi: 10.1016/j.patcog.2006.08.012
|
| 11 |
|
| 12 |
杭昊, 黄影平, 张栩瑞, 等. 面向道路场景语义分割的移动窗口变换神经网络设计. 光电工程, 2024, 51(1): 230304.
|
|
HANG H, HUANG Y P, ZHANG X R, et al. Design of Swin Transformer for semantic segmentation of road scenes. Opto-Electronic Engineering, 2024, 51(1): 230304.
|
| 13 |
FAN J F, CAO X H, YAP P T, et al. BIRNet: brain image registration using dual-supervised fully convolutional networks. Medical Image Analysis, 2019, 54, 193- 206.
doi: 10.1016/j.media.2019.03.006
|
| 14 |
BALAKRISHNAN G, ZHAO A, SABUNCU M R, et al. VoxelMorph: a learning framework for deformable medical image registration. IEEE Transactions on Medical Imaging, 2019, 38(8): 1788- 1800.
doi: 10.1109/TMI.2019.2897538
|
| 15 |
ONOFREY J A, OKSUZ I, SARKAR S, et al. MRI-TRUS image synthesis with application to image-guided prostate intervention[C]//Proceedings of the International Workshop on Simulation and Synthesis in Medical Imaging. Berlin, Germany: Springer, 2016: 157-166.
|
| 16 |
YAN P, XU S, RASTINEHAD A R, et al. Adversarial image registration with application for MR and TRUS image fusion[C]//Proceedings of the Machine Learning in Medical Imaging: 9th International Workshop. Berlin, Germany: Springer, 2018: 197-204.
|
| 17 |
SHAO W, BANH L, KUNDER C A, et al. ProsRegNet: a deep learning framework for registration of MRI and histopathology images of the prostate. Medical Image Analysis, 2021, 68, 1019- 1030.
|
| 18 |
HASKINS G, KRUECKER J, KRUGER U, et al. Learning deep similarity metric for 3D MR-TRUS image registration[EB/OL]. [2023-11-20]. https://arxiv.org/pdf/1806.04548.
|
| 19 |
GUO H T, KRUGER M, XU S, et al. Deep adaptive registration of multi-modal prostate images. Computerized Medical Imaging and Graphics, 2020, 84, 101769.
doi: 10.1016/j.compmedimag.2020.101769
|
| 20 |
SONG X, GUO H, XU X, et al. Cross-modal attention for MRI and ultrasound volume registration[C]//Proceedings of the Medical Image Computing and Computer Assisted Intervention. Berlin, Germany: Springer, 2021: 66-75.
|
| 21 |
HU Y P, MODAT M, GIBSON E, et al. Label-driven weakly-supervised learning for multimodal deformable image registration[C]//Proceedings of the 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). Washington D. C., USA: IEEE Press, 2018: 1070-1074.
|
| 22 |
XU Z L, NIETHAMMER M. DeepAtlas: joint semi-supervised learning of image registration and segmentation[C]//Proceedings of the Medical Image Computing and Computer Assisted Intervention. Berlin, Germany: Springer, 2019: 420-429.
|
| 23 |
SHAO W, BHATTACHARYA I, SOERENSEN S J, et al. Weakly supervised registration of prostate MRI and histopathology images[C]//Proceedings of the Medical Image Computing and Computer Assisted Intervention. Berlin, Germany: Springer, 2021: 98-107.
|
| 24 |
ZHANG D W, ZHENG Z L. Joint representation learning with deep quadruplet network for real-time visual tracking[C]//Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN). [S. l. ]: AAAI Press, 2020: 1-8.
|
| 25 |
ELMAHDY M S, WOLTERINK J M, SOKOOTI H, et al. Adversarial optimization for joint registration and segmentation in prostate CT radiotherapy[EB/OL]. [2023-11-20]. https://arxiv.org/pdf/1906.12223.
|
| 26 |
LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2017: 2117-2125.
|
| 27 |
|
| 28 |
BIAN P C, ZHENG Z L, ZHANG D W. Light-weight multi-channel aggregation network for image super-resolution[C]//Proceedings of the Pattern Recognition and Computer Vision. Berlin, Germany: Springer, 2021: 287-297.
|
| 29 |
ISENSEE F, JAEGER P F, KOHL S A, et al. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nature Methods, 2021, 18(2): 203- 211.
doi: 10.1038/s41592-020-01008-z
|
| 30 |
ROY A G, NAVAB N, WACHINGER C. Concurrent spatial and channel 'squeeze & excitation'in fully convolutional networks[EB/OL]. [2023-11-20]. https://arxiv.org/pdf/1803.02579.
|
| 31 |
LUO C C, LI Y M, LIN K M, et al. Wavelet synthesis Net for disparity estimation to synthesize DSLR calibre Bokeh effect on smartphones[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2020: 2407-2415.
|
| 32 |
GUARIGLIA E, SILVESTROV S. Fractional-wavelet analysis of positive definite distributions and wavelets on D'(C) D'(C)[C]//Proceedings of the Engineering mathematics Ⅱ: Algebraic, Stochastic and Analysis Structures for Networks, Data Classification and Optimization. Berlin, Germany: Springer, 2016: 337-353.
|
| 33 |
LIU P J, ZHANG H Z, ZHANG K, et al. Multi-level wavelet-CNN for image restoration[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. Washington D.C., USA: IEEE Press, 2018: 773-782.
|
| 34 |
QU L Q, ZHANG Y Q, WANG S, et al. Synthesized 7T MRI from 3T MRI via deep learning in spatial and wavelet domains. Medical Image Analysis, 2020, 62, 101663.
doi: 10.1016/j.media.2020.101663
|
| 35 |
GHASEMZADEH A, DEMIREL H. 3D discrete wavelet transform-based feature extraction for hyperspectral face recognition. IET Biometrics, 2018, 7(1): 49- 55.
doi: 10.1049/iet-bmt.2017.0082
|
| 36 |
LI S T, PENG J L, KWOK J T, et al. Multimodal registration using the discrete wavelet frame transform[C]//Proceedings of the 18th International Conference on Pattern Recognition. Washington D.C., USA: IEEE Press, 2006: 877-880.
|
| 37 |
|
| 38 |
KANG M, HU X J, HUANG W L, et al. Dual-stream pyramid registration network. Medical Image Analysis, 2022, 78, 102379.
doi: 10.1016/j.media.2022.102379
|
| 39 |
CHEN J Y, HE Y F, FREY E C, et al. ViT-V-Net: vision transformer for unsupervised volumetric medical image registration[EB/OL]. [2023-11-20]. https://arxiv.org/pdf/2104.06468.
|
| 40 |
CHE T, WANG X, ZHAO K, et al. AMNet: adaptive multi-level network for deformable registration of 3D brain MR images[EB/OL]. [2023-11-20]. https://arxiv.org/pdf/2104.06468.
|
| 41 |
CHEN J Y, FREY E C, HE Y F, et al. TransMorph: Transformer for unsupervised medical image registration. Medical image analysis, 2022, 82, 102615.
doi: 10.1016/j.media.2022.102615
|
| 42 |
GUO M H, LIU Z N, MU T J, et al. Beyond self-attention: external attention using two linear layers for visual tasks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 45(5): 5436- 5447.
|