Author Login Chief Editor Login Reviewer Login Editor Login Remote Office

Computer Engineering ›› 2025, Vol. 51 ›› Issue (10): 182-190. doi: 10.19678/j.issn.1000-3428.0069476

• Advanced Computing and Data Processing • Previous Articles     Next Articles

Dynamic Pricing Algorithm for Edge Computing Task Offloading Based on Contextual Multi-Armed Bandit

GAN Nan1, FU Xiaodong1,2,*(), FENG Yan3   

  1. 1. Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
    2. Yunnan Key Laboratory of Computer Technology Application, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
    3. Yunnan Provincial Academy of Science and Technology, Kunming 650228, Yunnan, China
  • Received:2024-03-04 Revised:2024-04-28 Online:2025-10-15 Published:2024-06-26
  • Contact: FU Xiaodong

基于上下文多臂赌博机的边缘计算任务卸载动态定价算法

甘楠1, 付晓东1,2,*(), 冯艳3   

  1. 1. 昆明理工大学信息工程与自动化学院,云南 昆明 650500
    2. 昆明理工大学云南省计算机技术应用重点实验室,云南 昆明 650500
    3. 云南省科学技术院,云南 昆明 650228
  • 通讯作者: 付晓东
  • 基金资助:
    国家自然科学基金(62362043); 云南省科技计划项目(202204BQ040010); 云南省科技计划项目(202102AD080002)

Abstract:

Existing dynamic pricing algorithms for edge computing are based on game-theoretic models and auction mechanisms. With the optimization objective of maximizing a service provider′s total revenue, existing pricing algorithms face difficulties in obtaining prior information about user utility, and most auction mechanisms favor local optimality over global optimality when selecting prices. To address these problems, this study proposes a dynamic pricing algorithm for offloading edge computing tasks based on a Contextual Multi-Armed Bandit (CMAB). First, the dynamic pricing problem of edge computing is modeled as a CMAB. Next, a dynamic pricing algorithm for task offloading based on Thompson Sampling (TS) is designed that employs a Bayesian posterior to induce service providers to select the price and updates the corresponding parameters by rewarding the revenue in each round, thereby effectively reducing the loss value of the total revenue in the dynamic pricing process. Finally, the effectiveness of the pricing algorithm is verified by simulating a real edge environment. The proposed pricing algorithm outperforms existing Multi-Armed Bandit (MAB) algorithms and pricing algorithms in terms of both the expected cumulative regret value and expected cumulative revenue value.

Key words: edge computing, task offloading, dynamic pricing, Contextual Multi-Armed Bandit (CMAB), Thompson Sampling (TS)

摘要:

现有边缘计算动态定价算法普遍基于博弈论模型与拍卖机制提出。以最大化服务提供商总收益为优化目标,现有定价算法在事先获取用户效用信息方面面临一定的难度,并且多数拍卖机制在选取价格时倾向于局部最优而非全局最优。针对上述问题,提出一种基于上下文多臂赌博机(CMAB)的边缘计算任务卸载动态定价算法。首先,将边缘计算动态定价问题建模为CMAB模型;然后,设计一种基于汤姆森采样(TS)的任务卸载动态定价算法,运用贝叶斯后验来诱导服务提供商进行价格选取,通过每一轮的奖励收益更新对应参数,有效减少了动态定价过程中总收益的亏损值。最后,模拟真实的边缘环境进行实验,验证了定价算法的有效性。仿真实验结果表明,该定价算法在期望累积遗憾值与期望累积收益值方面都优于现有多臂赌博机(MAB)算法和定价算法。

关键词: 边缘计算, 任务卸载, 动态定价, 上下文多臂赌博机, 汤姆森采样