1 |
杨笑笑, 柯琳, 陈智斌. 深度强化学习求解车辆路径问题的研究综述. 计算机工程与应用, 2023, 59 (5): 1- 13.
|
|
YANG X X , KE L , CHEN Z B . Review of deep reinforcement learning model research on vehicle routing problems. Computer Engineering and Applications, 2023, 59 (5): 1- 13.
|
2 |
ZUO Z Y , HAN Q L , NING B D , et al. An overview of recent advances in fixed-time cooperative control of multiagent systems. IEEE Transactions on Industrial Informatics, 2018, 14 (6): 2322- 2334.
doi: 10.1109/TII.2018.2817248
|
3 |
LOPEZ A , JIN W L , AL FARUQUE M A . Security analysis for fixed-time traffic control systems. Transportation Research, Part B: Methodological, 2020, 139, 473- 495.
doi: 10.1016/j.trb.2020.07.002
|
4 |
ZHAO D B , DAI Y J , ZHANG Z . Computational intelligence in urban traffic signal control: a survey. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2012, 42 (4): 485- 494.
|
5 |
屈新明, 姚红云, 王玉刚, 等. 基于有效绿灯时间利用率的自适应控制策略研究. 交通运输研究, 2015, 1 (1): 54- 58.
|
|
QU X M , YAO H Y , WANG Y G , et al. Adaptive control strategy based on effective utilization ratio of green light time. Transport Research, 2015, 1 (1): 54- 58.
|
6 |
LI S R , WEI C , YAN X D , et al. A deep adaptive traffic signal controller with long-term planning horizon and spatial-temporal state definition under dynamic traffic fluctuations. IEEE Access, 2020, 8, 37087- 37104.
doi: 10.1109/ACCESS.2020.2974885
|
7 |
叶宝林. 城市路网交通信号协调控制理论与方法研究[D]. 杭州: 浙江大学, 2015.
|
|
YE B L. Study on the theory and method of traffic signal coordinated control in urban road network[D]. Hangzhou: Zhejiang University, 2015. (in Chinese)
|
8 |
BELLOMO N , DOGBE C . On the modeling of traffic and crowds: a survey of models, speculations, and perspectives. SIAM Review, 2011, 53 (3): 409- 463.
doi: 10.1137/090746677
|
9 |
ZHENG Y , JIN L S , JIANG Y Y , et al. Research on cooperative vehicle intersection control scheme without using traffic lights under the connected vehicles environment. Advances in Mechanical Engineering, 2017, 9 (8): 115789974.
|
10 |
HAYES C F , RǍDULESCU R , BARGIACCHI E , et al. A practical guide to multi-objective reinforcement learning and planning. Autonomous Agents and Multi-Agent Systems, 2022, 36 (1): 26.
doi: 10.1007/s10458-022-09552-y
|
11 |
YE B L , ZHU S W , LI L X , et al. Short-term traffic flow prediction at isolated intersections based on parallel multi-task learning. Systems Science & Control Engineering, 2024, 12 (1): 2316160.
|
12 |
WAN C H , HWANG M C . Value-based deep reinforcement learning for adaptive isolated intersection signal control. IET Intelligent Transport Systems, 2018, 12 (9): 1005- 1010.
doi: 10.1049/iet-its.2018.5170
|
13 |
马东方, 陈曦, 吴晓东, 等. 基于强化学习的干线信号混合协同优化方法. 交通运输系统工程与信息, 2022, 22 (2): 145- 153.
|
|
MA D F , CHEN X , WU X D , et al. Mixed-coordinated decision-making method for arterial signals based on reinforcement learning. Journal of Transportation Systems Engineering and Information Technology, 2022, 22 (2): 145- 153.
|
14 |
YE B L , WU W M , RUAN K Y , et al. A survey of model predictive control methods for traffic signal control. IEEE/CAA Journal of Automatica Sinica, 2019, 6 (3): 623- 640.
doi: 10.1109/JAS.2019.1911471
|
15 |
YE B L , WU W M , LI L X , et al. A hierarchical model predictive control approach for signal splits optimization in large-scale urban road networks. IEEE Transactions on Intelligent Transportation Systems, 2016, 17 (8): 2182- 2192.
doi: 10.1109/TITS.2016.2517079
|
16 |
MA W J , WAN L J , YU C H , et al. Multi-objective optimization of traffic signals based on vehicle trajectory data at isolated intersections. Transportation Research, Part C: Emerging Technologies, 2020, 120, 102821.
doi: 10.1016/j.trc.2020.102821
|
17 |
孔凌辉, 饶哲恒, 徐彦彦, 等. 基于深度强化学习的无线网络智能路由算法. 计算机工程, 2023, 49 (9): 199-207, 216.
|
|
KONG L H , RAO Z H , XU Y Y , et al. Intelligent routing algorithm for wireless networks based on deep reinforcement learning. Computer Engineering, 2023, 49 (9): 199-207, 216.
|
18 |
刘朝阳, 穆朝絮, 孙长银. 深度强化学习算法与应用研究现状综述. 智能科学与技术学报, 2020, 2 (4): 314- 326.
|
|
LIU Z Y , MU C X , SUN C Y . An overview on algorithms and applications of deep reinforcement learning. Chinese Journal of Intelligent Science and Technology, 2020, 2 (4): 314- 326.
|
19 |
刘智敏, 叶宝林, 朱耀东, 等. 基于深度强化学习的交通信号控制方法. 浙江大学学报(工学版), 2022, 56 (6): 1249- 1256.
|
|
LIU Z M , YE B L , ZHU Y D , et al. Traffic signal control method based on deep reinforcement learning. Journal of Zhejiang University (Engineering Science), 2022, 56 (6): 1249- 1256.
|
20 |
MA D F , ZHOU B , SONG X , et al. A deep reinforcement learning approach to traffic signal control with temporal traffic pattern mining. IEEE Transactions on Intelligent Transportation Systems, 2022, 23 (8): 11789- 11800.
doi: 10.1109/TITS.2021.3107258
|
21 |
叶宝林, 孙瑞涛, 吴维敏, 等. 基于异步优势演员-评论家的交通信号控制方法. 浙江大学学报(工学版), 2024, 58 (8): 1671-1680, 1703.
|
|
YE B L , SUN R T , WU W M , et al. Traffic signal control method based on asynchronous advantage actor-critic. Journal of Zhejiang University (Engineering Science), 2024, 58 (8): 1671-1680, 1703.
|
22 |
YE B L , WU P , LI L X , et al. Uniformity of Markov elements in deep reinforcement learning for traffic signal control. Electronic Research Archive, 2024, 32 (6): 3843- 3866.
doi: 10.3934/era.2024174
|
23 |
张尊栋, 王岩楠, 刘雨珂, 等. 基于Nash-Stackelberg分层博弈模型的路网交通控制强化学习算法. 东南大学学报(自然科学版), 2023, 53 (2): 334- 341.
|
|
ZHANG Z D , WANG Y N , LIU Y K , et al. Road network traffic control reinforcement learning algorithms based on Nash-Stackelberg hierarchical game model. Journal of Southeast University (Natural Science Edition), 2023, 53 (2): 334- 341.
|
24 |
陈喜群, 朱奕璋, 吕朝锋. 基于混合近端策略优化的交叉口信号相位与配时优化方法. 交通运输系统工程与信息, 2023, 23 (1): 106- 113.
|
|
CHEN X Q , ZHU Y Z , LV C F . Signal phase and timing optimization method for intersection based on hybrid proximal policy optimization. Journal of Transportation Systems Engineering and Information Technology, 2023, 23 (1): 106- 113.
|
25 |
YE B L , WU W M , MAO W J . A two-way arterial signal coordination method with queueing process considered. IEEE Transactions on Intelligent Transportation Systems, 2015, 16 (6): 3440- 3452.
doi: 10.1109/TITS.2015.2461493
|